3/14/18

MiC
\
> AD >10101001101
/ DFT
Identify Masking
domain \\ Huffman encoding
conversion 5 6
2,
8 %
“ees® s‘p&
- t \sample freq pyscl:‘o- a
- \ acoustics /
N (2 4 /" Huffman Decode

' IDFT
0\

Lecture #7 — Digital Logic
< DIA <—
ESE 150 — ESE150 Spring 2018 10101001101

DlGlTAL AU DIO BAS'CS Based on slides ©2009-2018 OK speaker MP3 Player / iPhone / Droid
DeHon h

ESE150 Spring 2018 ESE150 Spring 2018

How PROCESS LECTURE TOPICS

Setup

Where are we?
Combinational Logic
Sequential Logic
FPGAs

Next Lab

How do we build a machine to perform these
operations?
From Digital Samples - compressed digital data >
Digital Samples

Down to bottom
If we can build one kind of primitive element,
...and connect together large collections of them
can build a machine to perform any digital computation

ESE150 Spring 2018

ESE150 Spring 2018

78,9 10101001101

CoOURSE MAP — WEEK 8

CPU mic
\ Do
> AD >10101 Y > d
/ N\
Music 1 domain domain \\\
conversion 56 N
w %,
.es’ S

freq pyscho-

ysample freq pyscho-
acoustics \

acoustics (3
2

[N

< D/A <—10101001101

//
P3 Player / iPhone / Droid OK speaker MP3 Player / iPhone / Droid
12 ——— T

COMBINATIONAL LOGIC

AND GATE

AND =D

Output is 1 (true) when all inputs are 1 (true)

- 4 o o
- o = o
- o o o

OR GATE

or -

Output is 1 (true) when any input is 1 (true)
(fillin truth table for OR)

4 4 o o
- o = o

3/14/18

GATE

Primitive binary function
Computes a binary output from a small number of binary
inputs

Can specify function with a Truth Table
Defines the output for each input combination

- 2 o o
- o = o

NOT GATE

Not —Do'

Output is opposite of input

CLAIM

Can compute any Boolean Function from AND,
OR, NOT
(actually from NAND)

3/14/18

MoDEL: COMBINATIONAL LOGIC

Compute some “function”
f(ig,...ir) = 0p.01,--.0p

Each unique input vector
implies a particular, deterministic, output vector

Bic AND

AND =D

Output is 1 (true) when all inputs are 1 (true)

How built n-input AND from AND2 gates?

Bic OR

or -

Output is 1 (true) when any input is 1 (true)

How build n-input OR from OR2?

INPUT CONDITION

How can we create an expression that is true for
a specific input case?

E.g. have a function of 4 inputs: a, b, ¢, d
How many potential values for a, b, ¢, d?

Rows in our truth table
Give one example of values for a, b, c, d?
How create an expression that is true for that
case?

SINGLE OUTPUT DIGITAL FUNCTION

Given have logic to implement each input case
How implement entire function?

- 2 a4 200 o o
- 2 O O =~ =~ O O
= ol 2 jofa o - o
- O O O O © O =

|

MULTIPLE OUTPUT FUNCTION

What do you do if your Digital Function needs
multiple output bits?

ESE150 Spring 2018

COMBINATIONAL LOGIC AS GATES

Start with truth table
Single output {0, 1}
Use inverters to produce complements of inputs
For each input case
If outputis a 1

Develop an AND to detect that case
Decompose AND into gates

OR together the output of all such AND functions
Decompose OR into gates
Multiple outputs
Repeat for each output

This solution won't typically be the smallest or fastest...

ESE150 Spring 2018

3/14/18

ESE150 Spring 2018

CONCLUDE

Can implement any combinational logic
function out of a collection of
OR2, AND2, NOT gates

ESE150 Spring 2018

NAND2 GATE

NAND = NOT AND

Output is 0 (true) when all inputs are 1 (true); 0 otherwise

- 4 o o
- o = o
o o 4 a4

ESE150 Spring 2018

NAND UNIVERSALITY

Can implement
AND2 from NAND2
NOT from NAND2
OR2 from NAND2

Can implement any combinational logic

function out of a collection of
OR2, AND2, NOT gates

Therefore: Can implement any combinational

logic function out of a collection of NAND2

gates

ESE150 Spring 2018

MULTIPLEXER GATE s
MUX 0
When S=0, output=i1 i1
When S=1, output=i0
0 0 0
0 0 1 Truth Table?
0 1 0
AND, OR, NOT
v U U Implementation?
1 0 0
1 0 1
1 1 0
1 1 1

ARITHMETIC

Addition is also a digital logic function
Maps set of inputs (a3 a2 a1 a0 b3 b2 b1 b0)
To an output bit vector (c4 c3 c2 c1 c0)

...as is subtraction, multiplication, division,
square root....

3/14/18

FuLL ADDER

Adds 3 inputs to produce 2b output
Can produce truth table and logic (Lab)

abec

carry sum

SEQUENTIAL LOGIC

N-BIT ADDER

Given Full Adders
Can build N-bit adder by connecting N full adders

b3 a3 b2 a2 b1 a1l b0 a0 0
A LA [~

c4 c3 c2 cl c0

N
>

Mux wiTH FEEDBACK

What happens when S=0?
What happens when S=1?

Mux wiTH FEEDBACK

Assuming i0 doesn’t change
what happens when S goes from 0 to 1?

LATCH

S
Element that can hold a i
previous value of an input

i1

[7]

Input Latch Output

Hold

3/14/18

FLiP-FLoP (FF)

Use a pair to create a flip-flop o
Also call register

Sample D input on 021

transition of clock (CLK)

Never an open path from

D->Q

One of the mux latches always o

in hold state o Elo

STATE ELEMENT

Latch or Register is a state element
Allows circuit to remember a value

Build computations that i
Depend on past inputs
Reuse hardware in time

ACCUMULATOR

What does this do?

ACCUMULATOR

while (true)
a=a+getinput();

Accumulates
input values i

Integration or
summation

STATE FOR SEQUENCING AND CONTROL

Useful when trying to control things
E.g. Perform a sequence of operations
Robot
Open-gripper
Move-forward
Close-gripper
Lift

STATE FOR CONDITIONAL CONTROL

Useful when need to behave differently based
on something in the past
Remember if elevator going up or down
Remember/count coins from consumer

Remember some mode set by user
Displaying in Centigrade or Fahrenheit

Idea
Store state
Use as input to logic

3/14/18

ESE150 Spring 2018

FINITE-STATE MACHINE (FSM)

Sequential model of computation
State (in registers) + combinational logic
Compute outputs and next state

from inputs and state /\
Inputs Outputs

Combinational
Next
Logic Stae

FSM EXAMPLE

Simplified Vending Machine
Only input quarters
Only vend one item (output signal to indicate vending)
ltem costs 2 quarters
Coin Return request and control

Two states: waiting, one-quarter (one)
Two inputs: quarter, coin-return (creturn)
Two outputs: vend, return-quarter (qreturn)

ESE150 Spring 2018

TRUTH TABLE MODEL

vend qreturn next
waiting 0 0 0 0 waiting
waiting 0 1 0 0 waiting
waiting 1 0 0 0 one
waiting 1 1 0 1 waiting
one 0 0 0 0 one
one 0 1 0 1 waiting
one 1 0 1 0 waiting
one 1 1 0 1 one

SWITCH-STATEMENT MODEL

While (true)
switch (state) {
case waiting:
if (quarter && Icreturn)
state=one;
else
state=waiting;
greturn=quarter && creturn;
vend=0;
break;

ESE150 Spring 2018

SWITCH-STATEMENT MODEL (CONT.)

case one:
if ((quarter && !creturn)||
(lquarter&&creturn))
state=waiting;
else
state=one;
qreturn=creturn;
vend=quarter&& !creturn;
break;
} Il switch
} Il while

FSM GRAPH MODEL

lquarter/

vend=0, greturn=0
quarter&!creturn/ quarter&!greturn/
vend=1, greturn=0 vend=0, greturn=0
Iquarter&!creturn/
vend=0, greturn=0

quarter&creturn/
vend=0, greturn=1

Iquarter&creturn/
vend=0, greturn=1

lquarter&!creturn/
vend=0, greturn=0

3/14/18

MuXx CAN BE A PROGRAMMABLE GATE

Programmable Gate
Can be programmed to act as any gate
Use state (e.g. FF) to “program” truth table of a gate

PROGRAMMABLE LOGIC []

select
inputs

output

- 2 oo
- o = o

EXAMPLE: AND EXAMPLE: OR

How do we program to behave as AND2? How do we program to behave as OR2?

do0 dot1 d10 di1 do0 d01 d10 dit

(data inputs) (data inputs)
(select

inputs)

(select
inputs)
s1
s0

s1
sO

Look-Up TABLE (LUT) Mux CAN BE PROGRAMMABLE INTERCONNECT

Can generalize to any number of inputs

select
inputs

—

—
output E E

—

3/14/18

PROGRAMMABLE BLOCKS

g f d

e B ggen

|

<~ o

FIELD-PROGRAMMABLE GATE ARRAY FIELD-PROGRAMMABLE GATE ARRAY (FPGA)

Collection of Programmable Gates
Can “program” by setting state bits

LUTs that can be programmed to be any gate
With optional Flip-Flops to use for state

Programmable interconnect to “wire” the gates together

Logic Block

piral
ot

Gate Inputs.

NEXT LAB BIG IDEAS

Can implement any combinational digital logic

Program an FPGA in Verilog function from nand2 gates
Build an adder Can implement any FSM from nand2 gates and
Build an FSM registers
Can build a single chip that can be programmed
to behave as any collection of gates
As long as don’t need more gates than it provides

3/14/18

LEARN MORE REMINDER

CIS240 - do a bit more logic Formal Lab Report Due Sunday
ESE370 — how to implement gates, latches, and
memories from transistors

ESE532 — how to build large-scale
computations from logic

10

