3/25/18

ESE150 Spring 2018

\MIC
\
>

> AD >10101 Y >od
domain \\\
/. comersion (58 S
e %b%
R

ysample freq pyscho- v
3 2 acoustics (3)/

[N

Lecture #8 — Stored-Program Processors
< D/A<—10101001101

ESE 1 50 - ESE150 Spring 2018 - /4
DlGlTAL AU DIO BAS'CS Based on slides ©2009-2018 OK speaker MP3 Player / iPhone / Droid
DeHon h

ESE150 Spring 2018

ESE150 Spring 2018

How PROCESS EcoNomMmY AND UNIVERSALITY

How do we build a machine to perform these What if we only have a small number of gates?

operations? OR ... how many physical gates do we really
From Digital Samples - compressed digital data > need?
Digital Samples How do we perform computation with minimal hardware?
With simple gates and registers How do we change the computation performed
can build a machine to perform any digital computation by our hardware?

...if we have enough of them.

ESE150 Spring 2018
78,9 10101001101
LECTURE TOPICS COURSE MaP o
CPU 4 File-
Setup System
2
Where are we? > AD >l &\ 10
o
Memory s NIC
One-gate processor somain \\\ :7’7
Wide-Word, Stored-Program Processor comeson 56 1 & -
r 7o, 7
Contemporary Processors: ARM, Arduino L %ﬁ,ﬂ‘
\ I fi pyscho- »
Next Lab ,‘fam; e fred e &)/ Cloud
N 11
< DIA
p -
speaker MP3 Player / iPhone / Droid
12

ESE150 Spring 2018

COURSE MAP — WEEK 9
MIC

N\ D>
> AD > e
7

domain AN
conversion
5,6

/ s o
s \/ 0,
& 2
ot B,

\ sample freq pyscho-
3 > 4 acoustics (3)/

"N

< D/A<—10101001101
/4

3/25/18

speaker \—YM_P:‘}Playcr/iPhone/Droid

QuicK REMINDER

ESE150 Spring 2018

MULTIPLEXER GATE S
MUX 0
When S=0, output=i0 i

When S=1, output=i1

-_ A a4 a4 0O 0O o o
4~ 2n 00 -~ 2 0o
~Bl-=E- e
- 0O =2 O =2 2 O 0

STATE ELEMENT

Latch or Register is a state element
Allows circuit to remember a value

Build computations that i
Depend on past inputs
Reuse hardware in time

ESE150 Spring 2018

MuX CAN BE A PROGRAMMABLE GATE

Programmable Gate
Can be programmed to act as any gate
Use state (e.g. FF) to “program” truth table of a gate

output

select
inputs

A a2 o o
- o = o

NAND UNIVERSALITY

Can implement any combinational logic
function out of a collection of NAND2 gates
Or AND, OR, NOT combination
Or Programmable MUX gates (OR)

PRECLASS 1

What Function?
o1=a&b | b&c | a&c;
o02=ab"c;

How many gates?

RANDOM AcCcESS MEMORY

A Memory:
Series of locations
Can write values into
Read values from
Return last value written

Address

—_—

NoOUrWN—=O

Data

CouLD BUILD MEMORY W/ MUXES & LATCHES
... COLLECTION OF REGISTERS

Din
w3 = (and a0 a1 (not read))
w2 = (and (not a0) a1 (not read))
w1 = (and a0 (not a1) (not read))
\wo =(and (not a0) (not a1) {(not read)) _

A
\ _- R
\Decoder __ [!
- — | I Meanry
T it
i |

3

read

w3
w2
wi

wo

a0
al

3/25/18

MEMORY

Two PIECES OF A MEMORY

Element to remember a value
Way to address/select that element

Address
—

NOUBEWN—-O

Data

ESE150 Spring 2018

RANDOM AccCESS MEMORY (RAM)
WITH CAPACITOR MEMORIES

Decoder

Read

—

Address

Learn more: ESE370

KeEY ENGINEERING PROPERTY

Store state compactly in memory

A(memory cell) small
A(mem) < A(gate)

Depends on few

Address

inputs/outputs

—_—

Memory cells share

inputs and ouptuts

NoOUrWN—=O

Data

3/25/18

ONE-GATE PROCESSOR

IDEA

Store register and gate outputs in memory
Compute one gate at a time
Using a single physical gate

ESE150 Spring 2018

BAsic IDiom

Read gate value from memory
Perform operation on gate
Write result back to memory

Function

OPERATION

a=getInput(0);
b=getInput(1);
c=getInput(2);
tl=a&b;
t2=b&c;
t1=t1]t2;
t2=a&c;
ol=t1]t2; In0
tl=a"b;

02=tl1°c;
putOutput (1,02);
putOutput (0,01);

Function

OPERATION SEQUENCE

[0]1]2[3[4[5]6]7]
‘a‘b‘cltllt?[ol‘o?‘ ‘
Tnstruction Fields
¢} Description Type [Functionm0ln1Ouf
a—getnput(0); | read input 0 and put mslot 0 [READ| NONE [0 0] 0
b=getlnput(1); | read input L and put mslot 1 || READ| NONE | 1] 0] T
c=getluput(2); | read input 2 and put inslot 2| READ| NONE |2 0] 2
ti=alb; Tead value in slot 0 and value in || GATE| AND I
slot 1, perform an AND on the val-
ues, and store into slot 3 Ino
Missing Tead value in slot 1 and value in | GATE| AND |12 4
slot 2, perform an AND on the val-
C step? ues, and store into slot 4
t1=t1lt2; tead value in slot 2 and value in | GATE| OR |3 4] 3| oo
slot 3, perform an OR on the val-
ues, and store into slot 3

t2=akc; GATE| AND (024

Missing description?

3/25/18

OBSERVE

We can sequentialize operations,
reusing the single gate

As long as we can specify the
operation to be performed

Ino

What are we specifying? Funcion
(break it down, what information need?)

INSTRUCTION

Call this specification an instruction

Instructs the programmable,
reusable operators on what to perform

Function

ESE150 Spring 2018

EXPANDING THE STRUCTURE: INPUT

Add a multiplexer

to bring in inputs

Allow as option to

write into data o
memory

Data Memory
(Slots)

Function

value

ESE150 Spring 2018

EXPANDING THE STRUCTURE: OUTPUT

writeback enable, address, value
(from bottom) — goes 1o both memories

Add way to load a
designated output
register

Data Memory
(Siots)

Function

EXPANDED CONTROL = INSTRUCTION

witeback enable, address, value
(from bottom) -~ goes 1o both memories

Group the full
control into
instruction

Set of bits that
tells the structure
what to do

Data Memory
(siots)

(i s arorad adress

(1n0 bits are read address
oflft memory only)

(rogiters)

witeback enable address value

Tustruction Fields
c Deseription Type [P fIngjfn1 Out

tead fnput 0 and put i slot 0| READ| NONE[0]0 0
DgetTupui(1); | read input 1 and put inslot 1| READ| NONE [1]0 1
c=gotTnput(2); | road input 2 and put in slot 2| READ| NONE 20 2
ti=alb; read valie in slot 0 and value i || GATE| AND

slot 1, perform an AND on the val-
ues, and store into slot 3 R
read value n slot 1 and value in | GATE| AND |12 4
slot 2, perform an AND on the val-
ues, and store into slot 4

Ti=t1lt2; read value in slot 2 and value in |[GATE[OR [3[1 3
slot, 3, perform an OR on the val-
ues, and store into slot. 3
t2-akc; GATE| AND |02 4
ol=t1lt2; read value in slot 2 and valie in | GATE[OR |34 5

slot 3, perform an OR on the val.
ues, and store into slot 5
tiab; road value in slot. 0 and valuc | GATE| XOR |0]1 3
slot, 1, perform an XOR on the val-
ues, and store into slot 3
o2=tic; read value in slot 3 and value in
slot 2, perform an XOR on the val-
ues, and store into slot, 6

Instructions are
just a set of bits

Type - 2 bits

GateOp — 4 bits

In1 — 3 bits
Assume 8 slots

In2 — 3 bits

Out - 3 bits

How provide the
sequence of
instructions?

UNIVERSAL
PROCESSOR

Can change
computation
simply be
changing contents
of instruction
memory

INSTRUCTION BITS

0000001000010
010001000001010
010001001010100
0101110111001 1
010001000010100

Address 0110000001011
(Program | 010110011010110
Counter) | 100101110000001

GATE| AND 1 010001000001

witeback enable, address, value
(from bottom) -~ goes o both memories

Type GateOp

Data Memory
(siots)

™! 7] (it it are read ackress
of right memory ony)

!
&
(n i r e actoss
o ':{ R o oy

(rogiters)

witeback enable address value

INSTRUCTION SEQUENCE CONTROL

witeback enable, address, value
(from bottom) -~ goes o both memories

Type GateOp

Data Memory
(siots)

(It bits are read addross
o1 right memory ony)

(1n0 bits are read address
oflft memory only)

(rogiters)

witcback enable address value

Instruction Memory.

0000000000000
000000001000001

witoback enable, address, value
(irom bottom) - goes 10 Both memories

100101101000000 Data Memory
Siols)

(Int bits are read adcress
o

(10 bits are road address
of it memory only)

Inputo
Input 1
Function Input2
Inputa

Input4
Input

o s
Input7

Output 0
Output 1

o
woser) 4 oo

writeback enable _address value

3/25/18

INSTRUCTION BITS EXAMPLE

HIH H H GATE| AND 1 010001 001
Fillin Missing A

t1=t1]t2; read value in slot 2 and value in || GATE| OR |3 |4 3 || 010111011100011

slot 3, perform an OR on the val-

ues, and store into slot 3
t2=akc; GATE| AND |02 4 || 010001000010100
ol=t1]t2; read value in slot 2 and value in || GATE| OR |34

slot 3, perform an OR on the val-

ues, and store into slot 5

INSTRUCTION
MEMORY

Instruction Memory
0000000000000

00000001001
000000010000010
010001000001010
010001001010100
0101110110001
0100010001010

Address | 010110000001011
(Program | 010110011010110
Counter) | 1010111000001

100101101000000

witeback enable, address, value
{irom bottom) - goos (o Both memories.

Data Memory
(Slots)

Add Memory to
hOId set Of {In0 bits are read address
Instructions w [s

(Int bits are read address
of right memory oniy)

Counter to o

sequence =
instructions

nput 5
nput 7.

ouput0
Output 1
Ouiput2
ouput3
Ouput 4
Ouiputs
(ogsers) g o oy

witeback enable _address value

34

Instruction Memory

0000000000000
000000001000001

000000010000010
010001000001010
010001001010100
0101110110001
0100010001010

Single active pry Bl O e s
compute element " |1t
s
(programmable H..0
(In1 bits are read address
gate) i
Sequence in time
Store state in Ficton
memory i A
Use Instruction > o
memory to select
Fvert
and sequence oz
operations Ooers
o
36

STORED-PROGRAM PROCESSOR

BAsIC IDEA

Express computation [

in terms of a few primitives
E.g. Add, Multiply, OR, AND, NAND

Provide one of each hardware primitive

Store intermediates in memory

Sequence operations on hardware to perform
larger computation

Store description of operation sequence in
memory as well — hence “Stored Program”

By filling in memory, can program to perform
any computation

3/25/18

=

“STORED PROGRAM” COMPUTER

Can build physical machines that perform
any computation.

Can be built with limited hardware that is
reused in time.

Historically: this was a key contribution of
Penn’s Moore School

ENIAC-> EDVAC
Computer Engineers:
Eckert and Mauchly
(often credited to
Von Neumann)

BUILDING OuT

003000005000
200000001000001
0000010000010
Bio0ato00m010

How limited?
How might improve?

ESE150 Spring 2018

BEYOND SINGLE GATE

Single gate extreme to make the high-level point
Except in some particular cases, not practical

Usually reuse larger blocks
Adders
Multipliers

Get more done per cycle than one gate

Now it’s a matter of engineering the design point

Where do we want to be between one gate and full circuit
extreme?

How many gate evaluations should we physically compute
each cycle?

WORD-WIDE PROCESSORS

Common to compute on multibit words
Add two 16b numbers
Multiply two 16b numbers
Perform bitwise-XOR on two 32b numbers

b[3] a[3] b[2] a[2] b[1] a[1] b[0] a[0]
More hardware
NOANUANG

N4
16 full adders, 32 XOR gates V t? V

cf3] cl2] Eill o]
All programmable gates doing the same thing
So don’t require more instruction bits

MuLTIBIT Bus SYMBOLS

b[3:0] a[3:0]
ﬂ b[3] a[3] b[2] a[2] b[1] a[1] b[0] a[0]
4
o[3:0] c[3] c2] c[1] c[0]

ALU OPs (ON 8BIT WORDS)

XOR 00011000 00010100 =

xor 0x18 to 0x14 resultis
ADD 00011000 00010100 =
Add 0x18 to 0x14 result is:
Add 24 to 20 result is:
SUB 00011000 00010100 =
Subtract 0x14 from 0x18 ...resultis:
INV 00011000 XXXXXXXX =
Invert the bits in 0x18 ...gives us:
SLL 00011000 XXXXXXXX =
Shift left 0x18 ... gives us:

ALU-BASED WORD-WIDE PROCESSOR

ARITHMETIC AND LoGic UNIT (ALU)

A common primitive logic is the ALU
Can perform any of a number of operations on a
series of words (strings of bits)
Operations: Add, subtract, shift-left, shift-right,
bitswise xor, and, or, invert,
Operates on “words”
Identify a set of control bits that select the
operation it forms
Makes it “programmable”

A B

op0
opl
op2
op3

ALU ENCODING

Each operation has some bit sequence
ADD 0000

SuUB 0010
INV 0001 A B
SLL 1110
op0
SLR 1100 op1
AND 1000 op2
op3

BEYOND LINEAR SEQUENCE

So far, processor can run a fixed
sequence

Might like to
Repeat sequence T

Conditionally execute

instruction or sequence -t

3/25/18

ESE150 Spring 2018

SE150 Spring 2018

3/25/18

BRANCHING

Allow PC to be loaded

Add Instruction bits
(or instruction) to
control loading

BRANCH Slot=In0

BRANCHING

Conditional in slot 4
Slot 7 - true target
Slot 8 — false target
S§5=84<<1
S4=85|S4

(repeat width)
S5=1S84

S$6=S4*S7// 0 or S7
S$5=85*S8 // S8 or 0
S$5=85+8S6 // target
BRANCH S5

IPOD PROCESSOR

Compare ARM7

Instr
Mem

Instr
Mem

Instr
Mem

ESE150 Spring 2018

BRANCHING

How
Branch to top of loop?
Conditionally branch
to top of loop?
Implement if-then?

Instr
Mem

CONTEMPORARY PROCESSORS

ESE150 Spring 2018

ARDUINO

AVR

Instr
Mem

ATmega328/P Datasheet

3/25/18

ARDUINO
AVR

ARDUINO
AVR

Adds separate 8-bit architecture
Data Memory 8b wide ALU B
from Register File 32x8 Register File
32 register
(common, nanin 8b wide wencan

omitted above for
simplicity)

16b instructions
“most” instructions

2K B data memory
SRAM

32KB program

memory

ATmega328/P Datasheet Flash ATmega328/P Datasheet

nstrucion Tnstrucion
decode decode.

INSTRUCTIONS: TWO OPERAND AVR INSTRUCTIONS

Typically 2-operand, where one operation is arene ovosewemenows
both source and destination s oy s o e s |

ADD Rd,Rr Add two Registers without Carry R Rd + Rr ZCNVH 1
ADD R1, R2 Abc R, Rr 'Add two Registers with Carry Rd R4+ Rr+ C ZeNvH 1
ADIW RdlK ‘Add Immediate to Word Rdh:Rdl « Rdh:Rdl + K ZCNVS 2

Says: R1<R1+R2 suB Rd,Rr Subtract two Registers RdRd-Rr ZCNVH 1

suBl Rd, K Subtract Constant from Register Rd —Rd-K ZCNVH 1

SBC Rd, Rr Subtract two Registers with Carry Rd«—Rd-Rr-C ZCNVH 1

Use to make code more compact sael ROK ‘Subtract Constant from Reg with Carry. RdRd-K-C ZCNVH 1
SBIW RdIK ‘Subtract Immediate from Word Rdh:Rdl « RdhRdl - K ZCNVS 2

AND Rd,Rr Logical AND Registers Rd e Rd - Rr Ny 1

ANDI Rd, K Logical AND Register and Constant Rd«—Rd-K ZNV 1

OR Rd, Rr Logical OR Registers Rd —RdvRr ZNV 1

ORI Rd, K Logical OR Register and Constant Rd —RdvK ZNV 1

EOR Rd, Rr Exclusive OR Registers Rd «Rd e Rr ZNV 1

ATmega328/P Datasheet

BRANCHING INSTRUCTIONS DATA MEMORY READ / WRITE (LOAD/STORE)
o rsrecmsrmcrons
Mnemonics | Operands | Description Operation Flags #Clocks MoV Rd, Rr Move Between Registers Rd «Rr None 1
RIMP k Relative Jump PC—PC+k+1 None 2 Moww Rd, Rr Copy Register Word Rd+1'Rd « Rr+1Rr None 1
MP Indirect Jump to (Z) PC—2Z None 2 LDI Rd, K Load Immediate Rd K None 1
JMP(1) Kk Direct Jump. PC k. None 3 D Rd, X Load Indirect Rd « (X) None 2
Lo Rd, X+ Load Indirect and Post-Increment Rd« (X), XX+ 1 None 2
BRANCH INSTRUCTIONS
RCALL 3 Relative Subroutine Call PC—PC+k+1 None 3 ST X.Rr Store Indirect (X) Rr None |2
oAl podiscticatl)(z) oz Rorc) 2 ST X+, Rr Store Indirect and Post-Increment (X)—RLX X+ 1 None 2
ELED 3 ICE ST E] FEE lone e ST X, Rr Store Indirect and Pre-Decrement Xe=X-1,(X)—Rr None 2
RET Subroutine Retumn PC « STACK None 4 ST Y, Rr Store Indirect (Y) < Rr None 2
ATmega328/P Datasheet ATmega328/P Datasheet

- [. _____________________________]

10

3/25/18

ESE150 Spring 2018

NEXT LAB BIG IDEAS
Look at Instruction-Level code for Arduino Memory stores data compactly
Understand performance from instruction-level Can implement large computations on small
code hardware by reusing hardware in time

Storing computational state in memory
Can store program control in instruction
memory
Change program by reprogramming memory
Universal machine: Stored-Program Processor

ESE150 Spring 2018

LEARN MORE

CIS240 - processor organization and assembly

CIS371 - implement and optimize processors
Including FPGA mapping in Verilog

11

