
3/28/18	

1	

Based on slides © 2009--2018 DeHon
Additional Material © 2014 Farmer

1

Lecture #9 – Operating Systems (OS)

!  What things can your phone do while you are
listening to an MP3?

2

!  We want our devices (including our phones) to
do many things at once.

3

!  We could…
"  Dedicate a separate processor for every task we want to

perform
!  How many would we need?
!  Maybe

"  Need dozen processors for our Phone

4

!  MP3 Play
"  44,000 samples per second decoded
"  500 cycles to decode a sample
"  How many instructions per second require?

!  What fraction of a 109 instruction per second
processor does this use?

5

!  If we dedicate a processor to MP3 decoding
"  It will sit idle most of the time

!  MP3 decoding (and many other things) do not
consume the processor

!  Maybe we can share the processor among
tasks?

6

3/28/18	

2	

!  Setup Need / Opportunity
!  Where are we
!  Role of Operating System
!  Virtualization

7 8

NIC

10101001101

EULA

click
OK

NIC

CPU

A/D

sample

domain
conversion

MP3 Player / iPhone / Droid

File-
System

10101001101

compress
freq pyscho-

acoustics

D/A

MIC

speaker

2 4

5,6

3

7,8,9

10

11
13

12

Music

Numbers
correspond to
course weeks

1

ESE150 Spring 2018

9

EULA

click
OK

A/D

sample

domain
conversion

MP3 Player / iPhone / Droid

compress
freq

D/A

MIC

speaker

2 4 3

Music

Numbers
correspond to
course weeks

1

10101001101

pyscho-
acoustics

5,6

ESE150 Spring 2018 Penn ESE250 S'12 -- Kod &
DeHon

10

!  By filling in memory, can program to
perform any computation

DAY 8

11

!  How can we change the
program/app?
"  How do we gets the bits

into memory?

!  What if had to reboot
machine (change flash
card) for every
application?

12

3/28/18	

3	

!  How could I have
multiple applications?
"  (just run one at a time for

now)

13

!  How can multiple
applications run
simultaneously on this?

14

!  Does every program need to
 know about every other
 program?

"  Implications?

!  Where acceptable?
"  Proprietary system with small
 set of applications all developed
 in-house.

!  Where unworkable?
"  Any upgradeable platform (e.g. laptop, iPhone)
"  Any platform integrating non-source applications from variety of

sources

15

!  Higher-level, shared support for all programs
"  Could put it in program, but most programs need it!
"  Needs to be abstracted from program

!  Resource sharing
"  Processor, memory, “devices” (net, printer, audio)

!  Polite sharing
"  Isolation and protection

!  Idea: Expensive/limited resources can be
shared in time – OS manages this sharing

16

!  What software support do most programs
need?

!  Examples:
"  Memory allocation/deallocation
"  Handle I/O: keyboard/screen
"  Draw pretty boxes/menus/selections

17

!  Displays
!  Input (keyboard, mouse)
!  Storage (hard drive, USB drive, CDROM)
!  Network (ethernet, wifi, bluetooth)
!  Microphone, speakers
!  GPS
!  Printer

18

3/28/18	

4	

!  Coordinate among multiple users
"  Don’t want programs accessing hardware directly

ignorant of other users
!  Exclusively allocate to one application at a

time?
"  Speaker
"  Printer
"  Screen? (portion of screen?)

!  Allow interleaved use?
"  Network
"  Hard disk

19 20

!  Providing an abstract view separate from the
physical view

!  Hides physical view
!  Provides abstract view to software

"  Abstract from physical resource limits

21

!  Virtualize the processor
"  Make it look like we have multiple processors
"  With each program running on its own processor

!  Abstraction
"  Programs see hardware as simple blocks

# Ex: USB/Display/I/O all seen as a “file”
# Programmer View:

$  calls function: “FGETC()” to read character from keyboard
# OS View:

$  Transfers data along databus from keyboard into memory
$  Loads data from memory to regfile, returns to user
$  Programmer/User never knows how complex things are!

22

!  Process
"  A virtualization of the physical processor

#  an instance of a program in execution

"  Virtual processor

23

!  Physically
"  One processor

# One PC
# One data memory
# One instruction memory

"  These are its state
# Terminology: context

24

3/28/18	

5	

!  To execute program
"  Keep track of state of machine

# Value of counter
# Contents of instruction memory
# Contents of data memory

25

(Program counter)

!  Simulate one of the 2 cases (as indicated on
your worksheet) for the 12 cycles shown.

26

27

0 5 35 255 66

0 1 5 35 66

1 2 5 0 66

!  What is the state for the +12 cycle?

!  What is the state for the +6 cycle?

28

!  On the physical machine, can only run one
program
"  Why?

# One PC
# One memory

29

!  Make it look like we have multiple resources
"  Multiple processors

!  Provide abstraction of large* number of
processors
"  Each program gets its own processor

# Each program gets its own machine state
"  * “large” enough to approximate infinite

30

3/28/18	

6	

31

!  Can capture state of a processor
"  All the information that defines the current point in the

computation

32

!  What is the state of the processor?
# Value of Program Counter (PC)
# Contents of instruction memory
# Contents of data memory

33

!  Can capture state of a processor
"  All the information that defines the current point in the

computation
"  i.e. program counter, data and instruction memory

!  Can save that in memory
"  A different memory from what the process sees
"  (could be different range of addresses)

!  Fully represents the running program
!  Can restore that from memory to the processor
!  Can save/restore without affecting the

functional behavior of the program

34

35

!  Now that we can save/restore the state
!  Can share processor among processes

"  (Restore state; run for time; save state)
!  Isolation: none of the processes need to know

about each other
"  Each thinks it has the a whole machine

36

3/28/18	

7	

!  “save all of memory” ?
"  Must have more memory
"  Enough to hold all the memory of all the running

programs == all the processes
!  Each program has view that it owns machine

"  Each may put program in same place?
"  Shouldn’t have to know about other programs, where

they use memory

37

!  Each program has view that it owns machine
"  Each may put program in same place?
"  Shouldn’t have to know about other programs, where

their stacks are…
!  Could:

"  Have programs operate 0…max_process_mem
"  Copy data in and out of this range
"  Keep elsewhere

# more memory not visible to program
# On disk

38

39 40

Save

41 42

R
es

to
re

3/28/18	

8	

43

R
es

to
re

!  Each program has view of it owns machine
"  Each may put program in same place
"  Shouldn’t have to know about other programs…

# where their stacks are…etc.

!  Can do better
"  Avoid copying
"  Virtualizing Memory as well

# Translate processor addresses

44

!  Need another program ! process
"  Manage swap of running processes
"  Decide what to run next
"  Decide when to stop a process

!  …process manager/scheduler

45

!  Simplest version:
"  Run each process for 10,000 cycles
"  Then swap to next process
"  Looks like each process runs on a processor 1/n-th the

speed of the real processor
!  More sophisticated:

"  Assign uneven time to processes
"  Also change when process…

# waits for input
"  What are cases where this is

#  appropriate?

46

!  Write down the +6 cycle state from the opposite
case
"  This is your “swap back in” of task

47

!  Simulate from +6 cycles

!  What is the state for the +12 cycle?

!  Compare earlier solutions

48

3/28/18	

9	

!  Simulating a case:
!  Processor runs A for 6 cycles

"  Then stores off to memory.
!  Processor runs B for 6 cycles

"  Then stores off to memory
!  Processor reads A state from memory and runs

for another 6 cycles
!  Processor reads B state from memory and runs

for another 6 cycles

49

!  Similar concept
"  Identify state of device
"  Save/restore state as use “virtual” device

!  Window as virtualization for screen
"  May not even be visible (e.g. minimized)

50

!  Explore linux and processes on linux
!  Monday after next (4/9)

!  This Monday (4/2) – Processor Lab

51

ESE150 Spring 2018

!  Can capture state of a processor
"  All the information that defines the current point in the

computation
"  i.e. program counter, data and instruction memory…

!  Can save that in memory
"  A different memory from what the process sees
"  (could be different range of addresses)

!  Fully represents the running program
!  Can restore that from memory to the processor
!  Can save/restore without affecting the

functional behavior of the program

52

Penn ESE250 S'12 -- Kod &
DeHon

53

!  Virtualize hardware
"  Identify state; save/restore from memory

!  Program view: owns complete machine
!  Allows programs to share limited physical

hardware (e.g. processor)
"  Provide illusion of unlimited hardware

!  Operating System is the program that
manages this sharing

!  CIS380 – Operating Systems

54

ESE150 Spring 2018

