= ‘
Lecture #11 — Storage/Filesystems
ESE 150 —

Based on slides ©2009—2018 DeHon
Additional Material © 2014 Farmer

DiGITAL AuDIO BAsICS

7,89 10101001101
CPU s OS/File-
System
> AD >l i
NIC
. °,
w— AN —
2, LS
2
*ees® &N
\sample freq Ppyscho- Cloud
acoustics (3 )/
\ 2’5 /4
12
speaker \—YM_N}PIay-rIiPhone/Droid
13

|
WHAT WE’LL COVER TODAY...

10101001101

The mighty
File System!

Last Lecture...

We discussed the idea of an OS
Vitualizes Hardware

Key part of any OS is its filesystem...we'll talk about that today
From floppy disk/hard disk/compact disc/flash drive... “virtually” the same!

4/11/18

|
LECTURE TOPICS

Where are we on course map?
Overview of Today’s Lecture

How/Where do we store our digital music?
Persistent Storage Technology
Filesystems
Abstraction 1 : files/directories
Abstraction 2: b-nodes/i-nodes
Abstraction 3: filesystems

Next Lab

10101001101
¥ OS/File-

System
1"

Mic CPU

domain N
conversion 6 Y

%’"s
R

ysample freq pyscho- v
acoustics (3 )/
2,5 4 74

[~
P
/ =
Ly
speaker \—YM_NJPIayorIiPhan-IDroid

STORE AND FIND DATA

. DR S ]

G

e - |

MP3 encoded Songs on Smart Phone
Assignments on your laptop
Programs on eniac




PERSISTENT STORAGE TECHNOLOGY

Flash-drives / Hard-drives

HARD DRIVES / HARD Disks (HD)

A collection of metallic “platters”

Each platter covered with magnetic material
Magnetic charge ‘stores’ 1 bit of information
Can vary charge across platter!

HARD DISK

Disk with magnetic material on its surface
Divided into tracks (circles)
Modern disks
300,000 TPI
TPI = Tracks Per Inch

4/11/18

PERSISTENT STORAGE

Persistent Storage vs. non-persistent storage
We've discussed “memory” in a computer (regFile/cache/RAM)
This is considered non-persistent storage
Turn off computer, information is lost
Persistent Storage — long term storage
Information/data stored across on/off cycles of the machine
Power goes off, data doesn’t disappear!
Persistent Storage Technology

Many different kinds:

Flash drives/SSD drives/Floppy disk/Hard drive/compact discs/
etc.

- |
|
HARD Disk

Disk with magnetic material on its surface

HARD Disk

Disk with magnetic material on its
Divided into bit regions
Modern disks
1.5M BPI
BPI= bits per inch




|
HARD DISK

Each bit located at a position (R,8)

disk spins
Traces through ©

HARD DiISK

Each bit located at a position (R,8)
Head arm moves
Varies R

DisKk BANDWIDTH

Typical Disk speed?
15,000 RPM
One rotation every
60s/15,000=4ms
At R=1 inch and 1.5M BPI,
How many bits/second?
27 x1inx 1.5MB/in / 4ms
9Mbits/4ms = 2.25Gb/s
=280 MB/s

https://www.youtube.com/watch?v=3owqvmMf6No \E—_ﬁ/

4/11/18

|
HARD Disk

|
Disk BANDWIDTH (PRECLASS 1, 2)

Typical Disk speed
15,000 RPM
Time for revolution in seconds?
At R=1 inch and 1.5M BPI,
How many bits in revolution?
How many bits/second?

Disk AccCEss TIME

Move head in R?
Also a few milliseconds: 6

How long to access a
random bit?

T

\\\\\\\:“‘
IR
NS




|
Disk AccEss TIME

Move head in R?

Also a few milliseconds: 6
Typical Data access: ~10ms

E.g. 4ms rotate +6ms seek
Random bit
throughput (b/s) ?

N
@&&
S
““\\!‘!\!“

Note: CD-ROMs
similar mechanism

THROUGHPUT AND IMPLICATIONS

Disk throughput and access time
10ms latency
280MB/s throughput (~1B/4ns)

Throughput faster than access time

10ms seek > Random bit access 100b/s

Sequential access 280MB/s
Conclude:

Want to exploit sequential access!
Read blocks of data

PERSISTENT STORAGE TECHNOLOGY

Flash-drives / Hard-drives

4/11/18

|
Disk READ/WRITE PERFORMANCE

Typical Data access: ~10ms
E.g. 4ms rotate +6ms seek
Throughput reading
4KB sequential chunk
1MB sequential chunk

SEAGATE 2.5” DISK DRIVE

Specifications 160GB!
Model Number ST91608220AS
Interface Options SATA 1.5Gb/s
Performance
Transfer Rate

Sustained Internal (MB/s) 44

Maximum External (MB/s) 150 5400 RPM
Flash Memory (MB) 256
Cache, Multisegmented (MB) 8
Average Seek (ms) 12.5
Average Latency (ms) 5.6
Performance Level 5400

http://www.seagate.com/docs/pdf/datasheet/disk/ds_momentus_5400_psd.pd
22

FLASH MEMORY

A little like memory circuits we have learned about...
Except it is non-volatile or simply...persistent storage
Data won’t go away when power is turned off
Based on the “floating gate” transistor

Today’s Examples
Persistent storage in your MP3 player, cell phone
FY!I: first iPod had a hard disk...
USB Flash drive
Solid-State Disk (SSD)

»
kS



wo ——_ | bitline
FLASH MEMORY PHine bselect

w2 wo |

w3 wi |

w2

Two ways to configure FG transistors in Flash Memory

NOR/NAND w3 |
NOR -- Read like other memories

Fast, but not very dense...used when speed is a must gndselecﬁ
NAND - Sequential read within “page”

Denser than NOR, but slower, use when area is a must
Can only “erase” in blocks

4KB, 64KB->256KB
Once erased can write byte (page) at a time

Write time variable

Typically need feedback to sense when written

INTEL SOLID-STATE DRIVE (SSD)

Table 3. Read and Write
‘Access Type I MB/s
Sequentil Read | w70
Sequential Write | up to 170
Table 4. Random Read and Write Input/Output Operations per Second (IOPS)
Access Type 105
3K Read 35,000
Ak Write 3,300

35,000/s x 4KB = 140MB/s

Table5.  Latency Specifications
Type ‘Average Latency
Read 75 ps (TYP)
Write 85 ps (TYP)
Power On to Ready 15

SSDhttp://download.intel.com/design/flash/nand/extreme/extreme-sata-ssd-datasheet.

N
N
| |

FILE

4/11/18

SAMSUNG 256Mx8 NAND FLASH
Parameter Symbol Min m Linit
Program Time tPrRoG" T 200 500 w12
Dummy Busy Time for Multi Plane Program tossy 1 0 us
Number of Partial Program Cycles | _ Main Aray Nop - . 1 cycle
in the Same Page [Spare Amay " " 2 oyde
Block Erase Time = - 2 3 ms
[ e Pulse wian = B g 3
WE High to Busy we - 100 ns
Read Cydle Time w4 50 - s
TE Access Time teea - a5 ns
RE Access Time tREA - 30 ns
RE High to Output -2 e - 30 ns
TE High to Output Hi-Z tonz - 20 ns
RE or CE High to Output hold 1oH 15 - ns
RE righ Hold Time = T 5 ™
Output H-Z 1o RE Low ™ 0 B ™
TWE High to RE Low e 0 B ns
Device Reselling Time ReasmrogamEnse) s - 5105000 | s
Last RE Figh to Busy(at sequential read) e - 100 ns
‘CE High to Ready(in case of interception by CE at read) terY - 50 +(RB)® | ns
"CE Figh Hold Timefa the last sorial read)® o 00 - s

FLASH MEMORY

Similar phenomenon
T~=A+BxN
Large fixed expense A

Move in R and O for disk ~ 10ms
Erase block for flash ~ 3ms

High bandwidth B for sequential data
Both ... ~100s of MB/s

Conclude
More efficient to operate on large chunks of data

2

How ORGANIZE DATA

Have technology to store bits
GB, TB of data
How do we find our data?
Remembering a (R,0) pair could be hard
Even remembering a 40b address
How do we distinguish used/unused storage?
Make sure someone doesn’t overwrite our data

|

3



FILE

Example File: my_file.txt (14 characters)
I LOVE ESE150! ‘

X49 x20 x4C x4F x56 x45
x20 x45 x53 x45 x31 x35

x30 x21
\\\\\\\\\\\\\a 01001001 00100000
01001100 01001111

01010110 01000101 ..
A file is simply a collection of bits
Whether it's an ASCII file or a binary file (.docx, pdf, etc)
A program gives the bits meaning

Sequential access to bits efficient > useful to group together so can read all
at once

31

How IS A FILE STORED?

A file is an abstraction of the physical storage media
Media “independent”
Don’t care how technology is implemented, just read/write file!
Recall a file consists of:
A bunch of bits
Logically related
Ex: my_report.docx, etc
A file system is responsible,
for providing this
abstraction of the disk ““\‘\\"‘\‘\“
On storage media, at lowest \\\\\\\‘ W

level, file is in “blocks” of bits \\\\
N

HOW WE STORE FILES ON PHYSICAL MEDIA

First Model
File
start address
Length
Allocate space sequentially

|
]

/]

III}
%

Keep track of first SN
free address Sﬁs\\\\\

7
/

20,

But what happens when... XN
we delete file?

Append to a file?

4/11/18

FILES = BLOCKS = PHYSICAL Disk

Mapping physical storage media to “bit/bytes/blocks”

]
How WE STORE FILES ON PHYSICAL MEDIA

As we write data to a disk, we do it sequentially...

Data in File 1 = blue, Data in File 2 = yellow, Data in file 3 = grey...
Sequentially written files have huge advantage in terms
of seek time...

S
Head/needle only moves once, ,ﬁ
e
then disk spins and /é//’%% \\§\
we read many bits at a time /////’l,“,’: \‘\\\\\\\\\
RN
o s
il

|
FRAGMENTATION

Let’s say we shorten file1 (blue file)...
We now have 2 open spaces (blocks) on disk
What happens when write a 4 file of 4 blocks?

The freespace is now
“fragmented”

Still usable,
just fragmented




e
How WE STORE FILES ON PHYSICAL MEDIA

We could also lengthen file1 (blue file)...
Ex. Need 2 more open spaces (blocks) to store file
How accommodate?

FRAGMENTATION

We could also lengthen file1 (blue file)...
What if we need 2 more open spaces (blocks) to store file
Should we actually move it on the disk? expensive...
Or instead...find 2 other open
spaces
and create a link
The file is no longer
sequential
Take longer to access
but functional;
still one “logical” file
(abstraction of media itself!)

WHAT IS A FILESYSTEM?

4/11/18

|
FRAGMENTATION

We could also lengthen file1 (blue file)...
Ex. Need 2 more open spaces (blocks) to store file

Should we actually move it on the disk?
Expensive
Now the address change
How programs and
people find the file
when it needs to
move?

FRAGMENTATION

Fragmentation is a fact of life

But who is keeping track of all this fragmentation?
Filesystem!

7=
7
5
Wil
11111
W
W
N

Note: disk de-fraimentation software built into OSs now

|
FORMATION OF A FILE / FILESYSTEM

Represent File
Not always just a sequence of bits on the media
When files become fragmented...
How account for and manage fragmentation?
How do we know where freespace is?
For that matter...
How are all the files kept track of, or even found on the disk?
The file system

Part of the operating system that organizes/keeps track of the disk
To understand what its keeping track of, we need to see what afile is...




|
FILE REPRESENTATION

File is not just a sequence of bits
Contains some data about it
Length
Type
Timestamp, ....
Set of pointers to the data (when large)
Allowing the data to be non-sequential

FILES = I-NODES - B-NODES/BLOCKS

i-node BL’I’U",{SS/ How does it work?
I0CKS "
Wicde [oms | If a file only needs 12 blocks on
Ownet info disk...
e fowe ]
e 12 direct block pointers are used
Tmestanps
Each of them point to a “bnode” or
Direct Blocks “block” of data on the disk
(12 pointers) If a file requires 13 blocks...
12 direct blocks are set/allocated
Indirect blocks fom ] 1 indirect block is also needed
(] B
Double Indicect -
B-nodes,
blocks M

FILES = I-NODES - B-NODES/BLOCKS

i-node g At 4KB / Bnode
e — How large a file can
Tesanps 4 represent using
P— only Direct Blocks?
(12 pointers) (assuming get full
Indirect blocks g 4KB block for data)

Double Indicect

gl

4/11/18

|
FILES - I-NODES - B-NODES/BLOCKS

i-node B-nodes/ . n the Linux OS
blocks
Mode [om | Popular filesystem named: ext3
Qunerin o ] Derived from original
Tiwestaups Unix File System (UFS)
Uses i-nodes
(12 pointers) What is an i-node?

A data-structure that represents

a file on the storage media

Consists of file information:
Owner, size, timestamp, etc.

Indirect blocks m
Also 15 pointers

Double Indicect | g
= ]
12 pointers that point directly to

B-nodes “blocks”
blocks 3 additional pointer that point to other
pointers! (indirect blocks)

FILES - I-NODES - B-NODES/BLOCKS

i-node B-nodes/ . \What exactly is a b-node?
Wode b,/opks\ Smallest unit of storage allocation
gwm'"ﬁ) Fixed-size of data on the disk itself
r:‘;m“px ! Typical sizes:
512 bytes for hard drives
DirectBlocks 2048 bytes for CDs/DVDs
(12 pointers) 4096 bytes (4kB) for todays drives

Smallest “addressable” unit on disk
Example: bnode address 76
Would get 76 x 4096 = 311,296
byte on disk

Indirect blocks fowe |
Address actually maps to physical

Double Indicect | g
Triple Inditect N
I I address on disk

B-nodes; Example: bnode address 76
blocks R=1.012in, 6=32.07 degrees
Actual location on disk
One level above media itself

FILES - I-NODES - B-NODES/BLOCKS

Bnode’s structure:
Bnode contains metadata (like a header)
Description of data to follow
Block type, File type, length
Bnode contains data itself (contents)
This is actual data for the file in question
Example shows only a 3172 block file (could use all 4072 bytes)

24 Bytes metadata

Example:
3172 Bytes
4096 Byte Block contents
bnode

900 Bytes unused




FILES = I-NODES - B-NODES/BLOCKS

Bnode’s structure:
bnode contains metadata (like a header)
Description of data to follow
Block type, File type, length
Alternatively...can be table of pointers (indirect block)
Can be a multi-level tree if necessary (doubly/triply indirect)

_____ ] | 24Byesmetadata 76:

3172 Bytes
Block contents

900 Bytes unused

49

SIZE OF B-NODE/BLOCK REPRESENTATION

Why not make block sizes smaller? (say 71-bit)

How about 1 bit at a time? Addressing each bit wouldn’t be easy...
1 TB disk ~ 9 trillion bits...9 trillion addresses!

Most times files are larger than just a few bits
Why not make block sizes larger? (512, 2048, 4096 bytes)
Usually, we transfer “blocks” of data to/from media at a time
Why not go larger?
Remember, block size is, smallest unit of addressable space

Tyrellenath 24 Bytes metadata In this 4kB block, 900 bytes

Example: are wasted
4096 gyt 3172 Bytes “Internally fragmented”
Block contents /

bnode No way to ‘un-fragment’
900 Bytes unused unless file itself grows

EXT3 FILE SIZE LIMITATIONS

Limits?
i-node is an array of (15) 32-bit pointers
If block = 4 KB, first 12 pointers represent 48 KB file

13" pointer — single Indirect bnode, 1024 pointers
Why 1024 pointers?

file
14! pointer — double indirect: file size?
15t pointer — triple indirect: file size?

ize?

Will that become a limit?
(Hint, welcome ext4 file system!)

4/11/18

FILES - I-NODES - B-NODES/BLOCKS

How help with shortening or appending to file?

_____|  24Byesmetadata 76:

3172 Bytes
Block contents

|

900 Bytes unused

50

B-NoDE/BLOCK SIZE

Performance: Balance
Number of blocks need to read
Efficiency of reading large blocks

Space efficiency: Balance
Internal fragmentation
Overhead for metadata and links

52

LEVELS OF ABSTRACTION /
. B-nodes/ W
M':(’de blogks “%{i‘\‘{\‘\\i\:&
Owner info N X %\§
See | Lowest Level to Highest Level of Abstraction
Timestanps N
DirectBlocks Physical Location on disk
. R=1.012in, §=32.07 degrees
(12 pointers) Block of data
Indirect blocks [ows | 4096 continuous bytes on disk
’_..:‘ : = B-node
Indirect blocks I [oe | Datastructure representing block of data|
Double Indirect i-node / file
Triple Indirect Datastructure representing many blocks
of data
Programmers work here (file level)
saves us from knowing about physical
details which may change across



How KEEP TRACK OF FILES?

Add another file that tells us where the files are
Directory

On ext3 filesystem...
Directories are just files themselves!
Pairs of (Name, i-node)
Contain pointers to other nodes

..and since files can be directories

Directories can contain directory files
...which can contain directory files...

Leading to a directory hierarchy

o
&

PRECLASS 4

10° data items

Assume at bottom of balanced tree

Each tree-node has c leaves

Directory i-node to hold c leaves needs
32xc Bytes

How many tree nodes must visit?

How long to read a tree node?

Time to lookup item (traverse tree)?
c=2, c=108%,¢c=10°

@
q

SUPERBLOCK

For bootstrapping and file system management

Each file system has a master block in a canonical
location (first block on device)

Describes file-system type
Root bnode
Keeps track of free lists ...at least the head pointers to
(bnodes, blocks)
Corruption on superblock makes file system
unreadable
=>Store backup copies on disk

59

4/11/18

[
UNIX SYSTEM FILE STRUCTURE
This is called

e root
directory
“ o

Below
“home” is up
to eniac
admins

ol .. A1

ESE150 “Home directory” is /home1/e/lese150 or simply: ~
Because the structure under “home” is typically different on all unix systems,

~ is a convention, and is always points to your home directory

LOOKING AT INODES

All directories start from “root” or / directory

esel50@plus:/> cd /

ees150@plus:/> ls -al

total 164

drwxr-xr-x 25 root root 4096 Mar 31 05:44 .
drwxr-xr-x 25 root root 4096 Mar 31 05:44 ..
drwxr-xz-x 2 root root 4096 Mar 31 05:44 bin
drwxr-xz-x 4 root root 4096 Mar 31 05:40 boot
drwxr-xr-x 18 root root 4020 Feb 19 13:37 dev

esel50@plus:/> 1s -ali
total 164
2 drwxr-xr-x 25 root root 4096 Mar 31 05:44 .
2 drwxr-xr-x 25 root root 4096 Mar 31 05:44 ..
393222 drwxr-xr-x 2 root root 4096 Mar 31 05:44 bin
2 drwxr-xr-x 4 root root 4096 Mar 31 05:40 boot
1025 drwxr-xr-x 18 root root 4020 Feb 19 13:37 dev

First block of disk is inode 1, called “masterblock” / “superblock”

58

HIGHER LEVEL EX: VIRTUAL FILE SYSTEM (VFS)

Provides common interface to many different underlying fil
pathname interface

A 4

VFS and vnode
interfaces

UFS Veritas FAT MVs
(local) VXFS

cd /home/d/data may live on NFS (on a server) or on local disk/CD-rom!

10



FORMAT DISK

Identify all non-defective bnodes
Defective blocks skipped
=> those addresses not assigned to bnodes

Create free bnode data structure
Create superblock

SECURITY CAVEATS

On standard Unix/Windows setups
Without the OS to provide protection,
all the data is accessible
Sometimes good for recovery
On standard Unix/Windows setups
rm/del doesn’t make the data go away
Also sometimes useful for recovery
Even format does not guarantee data overwritten

See: Remembrance of Data Passed: A Study of Disk Sanitization Practices

What about iPhone?

@
&

SECURITY EXAMPLE: FILE PERMISSIONS IN UNIX

File’s size
4 / File’s last modification date

Let’s examine that last resu

-rwxr-x--- 1 tfarmer tfarmer 0 Nov 8 21:24 file2.txt

\—v—} ‘\—T—/‘ \—Y—/ File’s name
\
v

‘L The “group” that has rights to this file
The permissions set
for this file The “owner” of this file

rwx r—xX —-—-— =>inbinary: 111 101 000 = in decimal: 750
\_X_) L
Everyone else on

‘ system’s permission (none)
v Group’s permission
(read & execute only)

4/11/18

]
Disk DATA SECURITY

How is security enforced?
OS demands credentials for login
User doesn’t get direct access to hardware
OS intermediates

I
|
SECURITY EXAMPLE: FILE PERMISSIONS IN UNIX

Best to show with an example:
Assuming you been typing in examples thus far, type:

cd ~/esel50
Puts you into the “ese150” subdirectory of your “~” home
directory

1s -al

Passes two “arguments” to the Is command:

“a” (shows all files/even hidden)

“I” (stands for long formatted listing, you will see)
1s —al will return the following directory listing:

student@minus:~/ese250> 1ls -al

total 12
drwxr-x--- 2 tfarmer tfarmer 4096 Nov 8 21:25 .
drwxr-x--x 36 tfarmer tfarmer 8192 Nov 8 21:24 ..
1 tfarmer tfarmer 0 Nov 8 21:25 filel.txt
1 tfarmer tfarmer 0 Nov 8 21:24 file2.txt

SECURITY EXAMPLE: FILE PERMISSIONS IN UNIX

To change permission on a file (or directory) you
own:

-rwxr-x--- 1 tfarmer tfarmer 0 Nov 8 21:24 file2.txt

Type:
chmod 700 file2.txt

Is —al shows the change:
—rWX--—---- 1 tfarmer tfarmer 0 Nov 8 21:24 file2.txt

Notice, the group lost its permission to see this file! (700, convert to binary)

To change ownership on a file you own:
Type:
chown edin:ese-facu file2.txt (changes owner & group)

Careful, now your TA Edin, owns the file (and you don't!!):
-rwx------ 1 edin ese-facu 0 Nov 8 21:24 file2.txt

11



]
OS’s AND THEIR FILESYSTEMS

Typically an OS has a native filesystem it supports:
Early PC OS: DOS (Disk Operating System)
File system: FAT (File Allocation Table)
Early Apple OS: Macintosh’s “System”
File system: MFS (Machintosh File System)
Today’s PC OS: Windows
File System: NTFS (New Technology File System)
Today's Apple OS: Mac OSx
File System: HFS+ (Hierarchical File System)
Today’s Linux OS: Ubutnu, Debian, Fedora, Red Hat, SUSE, etc)
File System: EXT (Extended File System)
Now a days, many OS include support for more than one file system
Example...CDs/DVDs have their own file system:
CDs: CDFS (Compact Disc File System): ISO 9660
DVDs: UDF (Universal Disk Format)

]
THIS WEEK IN LAB

Lab 10: Design multi-view file system
As might want for MP3 player

In Ketterer again
Lab posted

4/11/18

]
BIG IDEAS...FILESYSTEM

Filesystem
Responsible for governing/organizing the persistent
storage media (harddrive/flash/etc)
Provides a logical/common abstraction of the media to
the OS and eventually the programmer/user
Provides structures to keep data on disk logically
organized

Files may be all over the place physically, but programmer would
never know!

Provides mechanism for securing files on physical disk
Security not always respected without presence of OS

. |
.|
LEARN MORE AT PENN!
Online reading/pointers
Unix File System Tutorial
Flash, SSD, Hard drive data sheets
Data found on hard drive articles
Courses

CIS121 — efficient data structures
CIS380 — operating systems

70

12



