
4/11/18	

1	

Based on slides ©2009—2018 DeHon
Additional Material © 2014 Farmer

1

Lecture #11 – Storage/Filesystems

!  Where are we on course map?

!  Overview of Today’s Lecture

!  How/Where do we store our digital music?
"  Persistent Storage Technology
"  Filesystems

#  Abstraction 1 : files/directories
#  Abstraction 2: b-nodes/i-nodes
#  Abstraction 3: filesystems

!  Next Lab

2

3

NIC

10101001101

EULA

click
OK

NIC

CPU

A/D

sample

domain
conversion

MP3 Player / iPhone / Droid

10101001101

compress
freq pyscho-

acoustics

D/A

MIC

speaker

2,5 4

6

3

7,8,9

11

12
10

13

Music

Numbers
correspond to
course weeks

1

OS/File-
System

4

A/D

sample

domain
conversion

MP3 Player / iPhone / Droid

compress
freq

D/A

MIC

speaker

2,5 4 3

Music

Numbers
correspond to
course weeks

1

pyscho-
acoustics

6

CPU

7,8,9 10101001101

OS/File-
System

11

!  Last Lecture…
"  We discussed the idea of an OS

#  Virtualizes Hardware

"  Key part of any OS is its filesystem…we’ll talk about that today
"  From floppy disk/hard disk/compact disc/flash drive… “virtually” the same!

5

10101001101

The mighty
File System!

!  MP3 encoded Songs on Smart Phone
!  Assignments on your laptop
!  Programs on eniac

6

4/11/18	

2	

Flash-drives / Hard-drives

7 8

!  Persistent Storage vs. non-persistent storage
"  We’ve discussed “memory” in a computer (regFile/cache/RAM)

# This is considered non-persistent storage
# Turn off computer, information is lost

"  Persistent Storage – long term storage
#  Information/data stored across on/off cycles of the machine
# Power goes off, data doesn’t disappear!

!  Persistent Storage Technology
"  Many different kinds:

# Flash drives/SSD drives/Floppy disk/Hard drive/compact discs/
etc.

!  A collection of metallic “platters”
!  Each platter covered with magnetic material
!  Magnetic charge ‘stores’ 1 bit of information
!  Can vary charge across platter!

9

!  Disk with magnetic material on its surface

10

!  Disk with magnetic material on its surface
!  Divided into tracks (circles)
!  Modern disks

"  300,000 TPI
"  TPI = Tracks Per Inch

11

!  Disk with magnetic material on its surface
!  Divided into bit regions
!  Modern disks

"  1.5M BPI
"  BPI= bits per inch

12

4/11/18	

3	

!  Each bit located at a position (R,Θ)
!  R = select track
!  Θ = select bit from track
!  disk spins

"  Traces through Θ

13

!  Each bit located at a position (R,Θ)
!  Add arm to move head

14

!  Each bit located at a position (R,Θ)
!  Head arm moves

"  Varies R

15

!  Typical Disk speed
"  15,000 RPM

"  Time for revolution in seconds?
!  At R=1 inch and 1.5M BPI,

"  How many bits in revolution?
"  How many bits/second?

16

!  Typical Disk speed?
"  15,000 RPM
"  One rotation every

#  60s/15,000=4ms

!  At R=1 inch and 1.5M BPI,
!  How many bits/second?

"  2 π × 1 in × 1.5MB/in / 4ms
"  9Mbits/4ms = 2.25Gb/s

#  ≈ 280 MB/s

17

 https://www.youtube.com/watch?v=3owqvmMf6No

! Move head in R?
" Also a few milliseconds: 6

!  How long to access a
random bit?

18

4/11/18	

4	

! Move head in R?
" Also a few milliseconds: 6

!  Typical Data access: ~10ms
"  E.g. 4ms rotate +6ms seek

!  Random bit
throughput (b/s) ?

!  Note: CD-ROMs
 similar mechanism

19

!  Typical Data access: ~10ms
"  E.g. 4ms rotate +6ms seek

!  Throughput reading
"  4KB sequential chunk
"  1MB sequential chunk

20

21

!  Disk throughput and access time
"  10ms latency
"  280MB/s throughput (~1B/4ns)

!  Observations?
"  Throughput faster than access time
"  10ms seek ! Random bit access 100b/s
"  Sequential access 280MB/s

!  Conclude:
"  Want to exploit sequential access!

# Read blocks of data

22

http://www.seagate.com/docs/pdf/datasheet/disk/ds_momentus_5400_psd.pdf

5400 RPM

Flash-drives / Hard-drives

23

!  A little like memory circuits we have learned about…
"  Except it is non-volatile or simply…persistent storage
"  Data won’t go away when power is turned off
"  Based on the “floating gate” transistor

!  Today’s Examples
"  Persistent storage in your MP3 player, cell phone

# FYI: first iPod had a hard disk…

"  USB Flash drive
"  Solid-State Disk (SSD)

24

4/11/18	

5	

25

!  Two ways to configure FG transistors in Flash Memory
"  NOR/NAND

!  NOR -- Read like other memories
"  Fast, but not very dense…used when speed is a must

!  NAND – Sequential read within “page”
"  Denser than NOR, but slower, use when area is a must

!  Can only “erase” in blocks
"  4KB, 64KB!256KB

!  Once erased can write byte (page) at a time
"  Write time variable
"  Typically need feedback to sense when written

bitline
bselect

gndselect

w0

w1

w2

w3

w0

w1

w2

w3

bitline

26
http://www.datasheetcatalog.com/datasheets_pdf/K/9/E/2/K9E2G08U0M.shtml

27

SSDhttp://download.intel.com/design/flash/nand/extreme/extreme-sata-ssd-datasheet.pdf

35,000/s x 4KB = 140MB/s

!  Similar phenomenon
" T ~= A + B×N
"  Large fixed expense A

# Move in R and Θ for disk ~ 10ms
# Erase block for flash ~ 3ms

"  High bandwidth B for sequential data
# Both … ~100s of MB/s

!  Conclude
"  More efficient to operate on large chunks of data

28

29

!  Have technology to store bits
"  GB, TB of data

!  How do we find our data?
"  Remembering a (R,Θ) pair could be hard
"  Even remembering a 40b address

!  How do we distinguish used/unused storage?
"  Make sure someone doesn’t overwrite our data

30

4/11/18	

6	

!  A file is simply a collection of bits
"  Whether it’s an ASCII file or a binary file (.docx, pdf, etc)
"  A program gives the bits meaning
"  Sequential access to bits efficient ! useful to group together so can read all

at once
31

I LOVE ESE150!

Example File: my_file.txt (14 characters)

X49 x20 x4C x4F x56 x45
x20 x45 x53 x45 x31 x35
x30 x21

01001001 00100000
01001100 01001111
01010110 01000101 …

Mapping physical storage media to “bit/bytes/blocks”

32

!  A file is an abstraction of the physical storage media
"  Media “independent”
"  Don’t care how technology is implemented, just read/write file!

!  Recall a file consists of:
"  A bunch of bits
"  Logically related
"  Ex: my_report.docx, etc

!  A file system is responsible
 for providing this
 abstraction of the disk

"  On storage media, at lowest
 level, file is in “blocks” of bits

33

!  As we write data to a disk, we do it sequentially…
"  Data in File 1 = blue, Data in File 2 = yellow, Data in file 3 = grey…

!  Sequentially written files have huge advantage in terms
of seek time…
"  Head/needle only moves once,
 then disk spins and
 we read many bits at a time

34

First Model
!  File

"  start address
"  Length

!  Allocate space sequentially
"  Keep track of first

free address
!  But what happens when…

"  we delete file?
"  Append to a file?

35

!  Let’s say we shorten file1 (blue file)…
"  We now have 2 open spaces (blocks) on disk
"  What happens when write a 4th file of 4 blocks?

"  The freespace is now
 “fragmented”

# Still usable,
just fragmented

36

4/11/18	

7	

!  We could also lengthen file1 (blue file)…
"  Ex. Need 2 more open spaces (blocks) to store file
"  How accommodate?

37

!  We could also lengthen file1 (blue file)…
"  Ex. Need 2 more open spaces (blocks) to store file
"  Should we actually move it on the disk?

# Expensive
# Now the address change

$  How programs and
people find the file
when it needs to
move?

38

!  We could also lengthen file1 (blue file)…
"  What if we need 2 more open spaces (blocks) to store file
"  Should we actually move it on the disk? expensive…

# Or instead…find 2 other open
 spaces
 and create a link

"  The file is no longer
sequential
# Take longer to access
 but functional;
 still one “logical” file
 (abstraction of media itself!)

39

!  Fragmentation is a fact of life
"  But who is keeping track of all this fragmentation?

# Filesystem!

# Note: disk de-fragmentation software built into OSs now
40

41

!  Represent File
"  Not always just a sequence of bits on the media

!  When files become fragmented…
"  How account for and manage fragmentation?

!  How do we know where freespace is?
!  For that matter…

"  How are all the files kept track of, or even found on the disk?

!  The file system
"  Part of the operating system that organizes/keeps track of the disk
"  To understand what its keeping track of, we need to see what a file is…

42

4/11/18	

8	

!  File is not just a sequence of bits
!  Contains some data about it

"  Length
"  Type
"  Timestamp, ….

!  Set of pointers to the data (when large)
"  Allowing the data to be non-sequential

43

!  In the Linux OS
"  Popular filesystem named: ext3
"  Derived from original
 Unix File System (UFS)
"  Uses i-nodes

!  What is an i-node?
"  A data-structure that represents

a file on the storage media
"  Consists of file information:

#  Owner, size, timestamp, etc.

"  Also 15 pointers
#  12 pointers that point directly to

“blocks”
#  3 additional pointer that point to other

pointers! (indirect blocks)

44

i-node

(12 pointers)

Indirect blocks

B-nodes/
blocks

B-nodes/
blocks

!  How does it work?
"  If a file only needs 12 blocks on

disk…
#  12 direct block pointers are used
#  Each of them point to a “bnode” or

“block” of data on the disk

"  If a file requires 13 blocks…
#  12 direct blocks are set/allocated
#  1 indirect block is also needed

45

i-node

(12 pointers)

Indirect blocks

B-nodes/
blocks

B-nodes/
blocks

! 

46

i-node

(12 pointers)

Indirect blocks

B-nodes/
blocks

B-nodes/
blocks

47

i-node

(12 pointers)

Indirect blocks

B-nodes/
blocks

B-nodes/
blocks

!  At 4KB / Bnode
!  How large a file can

represent using
only Direct Blocks?
"  (assuming get full

4KB block for data)

!  Bnode’s structure:
"  Bnode contains metadata (like a header)

#  Description of data to follow
#  Block type, File type, length

"  Bnode contains data itself (contents)
#  This is actual data for the file in question
#  Example shows only a 3172 block file (could use all 4072 bytes)

48

Type/ length

3172 Bytes
Block contents

24 Bytes metadata

900 Bytes unused

Example:
4096 Byte
 bnode

4/11/18	

9	

!  Bnode’s structure:
"  bnode contains metadata (like a header)

#  Description of data to follow
#  Block type, File type, length

"  Alternatively…can be table of pointers (indirect block)
#  Can be a multi-level tree if necessary (doubly/triply indirect)

49

Type/ length

3172 Bytes
Block contents

24 Bytes metadata

900 Bytes unused

76: 77:

78:

79:

80:

obj, 15,791 mp3,
12MB

1024

!  How help with shortening or appending to file?

50

Type/ length

3172 Bytes
Block contents

24 Bytes metadata

900 Bytes unused

76: 77:

78:

79:

80:

obj, 15,791 mp3,
12MB

1024

!  Why not make block sizes smaller? (say 1-bit)
"  How about 1 bit at a time? Addressing each bit wouldn’t be easy…

#  1 TB disk ~ 9 trillion bits…9 trillion addresses!

"  Most times files are larger than just a few bits
!  Why not make block sizes larger? (512, 2048, 4096 bytes)

"  Usually, we transfer “blocks” of data to/from media at a time
"  Why not go larger?
"  Remember, block size is, smallest unit of addressable space

51

Type/ length

3172 Bytes
Block contents

24 Bytes metadata

900 Bytes unused

Example:
4096 Byte
 bnode

In this 4kB block, 900 bytes
are wasted
 “Internally fragmented”
No way to ‘un-fragment’
 unless file itself grows

!  Performance: Balance
"  Number of blocks need to read
"  Efficiency of reading large blocks

!  Space efficiency: Balance
"  Internal fragmentation
"  Overhead for metadata and links

52

!  Limits?
"  i-node is an array of (15) 32-bit pointers
"  If block = 4 KB, first 12 pointers represent 48 KB file
"  13th pointer – single Indirect bnode, 1024 pointers

#  Why 1024 pointers?
#  file size?

"  14th pointer – double indirect: file size?
"  15th pointer – triple indirect: file size?

!  Will that become a limit?
!  (Hint, welcome ext4 file system!)

53

!  Levels of abstraction

54

i-node

(12 pointers)

Indirect blocks

B-nodes/
blocks

B-nodes/
blocks

4/11/18	

10	

!  Add another file that tells us where the files are
"  Directory

!  On ext3 filesystem…
"  Directories are just files themselves!
"  Pairs of (Name, i-node)
"  Contain pointers to other nodes

!  …and since files can be directories
"  Directories can contain directory files

…which can contain directory files…
!  Leading to a directory hierarchy

55

/

bin usr home1 etc

a b c t z

teyvonia tfarmer tzheng teyvonia … … …
ESE150 “Home directory” is /home1/e/ese150 or simply: ~

Because the structure under “home” is typically different on all unix systems,
~ is a convention, and is always points to your home directory

Below
“home” is up

to eniac
admins

This is called
the “root”
directory

.

. . .

!  109 data items
!  Assume at bottom of balanced tree
!  Each tree-node has c leaves
!  Directory i-node to hold c leaves needs

"  32×c Bytes
!  How many tree nodes must visit?
!  How long to read a tree node?
!  Time to lookup item (traverse tree)?

"  c=2, c=103, c=109

57

!  All directories start from “root” or / directory

58

ese150@plus:/> cd /
ees150@plus:/> ls -al
total 164
drwxr-xr-x 25 root root 4096 Mar 31 05:44 .
drwxr-xr-x 25 root root 4096 Mar 31 05:44 ..
drwxr-xr-x 2 root root 4096 Mar 31 05:44 bin
drwxr-xr-x 4 root root 4096 Mar 31 05:40 boot
drwxr-xr-x 18 root root 4020 Feb 19 13:37 dev

ese150@plus:/> ls -ali
total 164
 2 drwxr-xr-x 25 root root 4096 Mar 31 05:44 .
 2 drwxr-xr-x 25 root root 4096 Mar 31 05:44 ..
393222 drwxr-xr-x 2 root root 4096 Mar 31 05:44 bin
 2 drwxr-xr-x 4 root root 4096 Mar 31 05:40 boot
 1025 drwxr-xr-x 18 root root 4020 Feb 19 13:37 dev

First block of disk is inode 1, called “masterblock” / “superblock”

!  For bootstrapping and file system management
"  Each file system has a master block in a canonical

location (first block on device)
"  Describes file-system type
"  Root bnode
"  Keeps track of free lists …at least the head pointers to

(bnodes, blocks)
!  Corruption on superblock makes file system

unreadable
"  "Store backup copies on disk

59

!  Provides common interface to many different underlying filesystems!

60

cd /home/d/data may live on NFS (on a server) or on local disk/CD-rom!

4/11/18	

11	

!  Identify all non-defective bnodes
"  Defective blocks skipped
" " those addresses not assigned to bnodes

!  Create free bnode data structure
!  Create superblock

61 62

!  How is security enforced?
"  OS demands credentials for login
"  User doesn’t get direct access to hardware
"  OS intermediates

63

!  On standard Unix/Windows setups
"  Without the OS to provide protection,

 all the data is accessible
# Sometimes good for recovery

"  On standard Unix/Windows setups
#  rm/del doesn’t make the data go away

$ Also sometimes useful for recovery

"  Even format does not guarantee data overwritten
!  See: Remembrance of Data Passed: A Study of Disk Sanitization Practices

!  What about iPhone?

!  Best to show with an example:
"  Assuming you been typing in examples thus far, type:
cd ~/ese150

# Puts you into the “ese150” subdirectory of your “~” home
directory

ls -al
# Passes two “arguments” to the ls command:
#  “a” (shows all files/even hidden)
#  “l” (stands for long formatted listing, you will see)

ls –al will return the following directory listing:

student@minus:~/ese250> ls -al
total 12
drwxr-x--- 2 tfarmer tfarmer 4096 Nov 8 21:25 .
drwxr-x--x 36 tfarmer tfarmer 8192 Nov 8 21:24 ..
-rw-r----- 1 tfarmer tfarmer 0 Nov 8 21:25 file1.txt
-rw-r----- 1 tfarmer tfarmer 0 Nov 8 21:24 file2.txt

!  Let’s examine that last result:
-rwxr-x--- 1 tfarmer tfarmer 0 Nov 8 21:24 file2.txt

The permissions set
for this file The “owner” of this file

The “group” that has rights to this file

Owner’s permission
(read, write, and execute)

Everyone else on
system’s permission (none)

Group’s permission
(read & execute only)

File’s size
File’s last modification date

File’s name

rwx r-x --- " in binary: 111 101 000 " in decimal: 750

!  To change permission on a file (or directory) you
own:
-rwxr-x--- 1 tfarmer tfarmer 0 Nov 8 21:24 file2.txt

Type:
chmod 700 file2.txt

ls –al shows the change:
-rwx------ 1 tfarmer tfarmer 0 Nov 8 21:24 file2.txt

Notice, the group lost its permission to see this file! (700, convert to binary)

!  To change ownership on a file you own:
Type:
chown edin:ese-facu file2.txt (changes owner & group)

Careful, now your TA Edin, owns the file (and you don’t!!):
-rwx------ 1 edin ese-facu 0 Nov 8 21:24 file2.txt

4/11/18	

12	

!  Typically an OS has a native filesystem it supports:
!  Early PC OS: DOS (Disk Operating System)

!  File system: FAT (File Allocation Table)
!  Early Apple OS: Macintosh’s “System”

!  File system: MFS (Machintosh File System)
!  Today’s PC OS: Windows

!  File System: NTFS (New Technology File System)
!  Today’s Apple OS: Mac OSx

!  File System: HFS+ (Hierarchical File System)
!  Today’s Linux OS: Ubutnu, Debian, Fedora, Red Hat, SUSE, etc)

!  File System: EXT (Extended File System)

!  Now a days, many OS include support for more than one file system
!  Example…CDs/DVDs have their own file system:

!  CDs: CDFS (Compact Disc File System): ISO 9660
!  DVDs: UDF (Universal Disk Format)

67

!  Filesystem
"  Responsible for governing/organizing the persistent

storage media (harddrive/flash/etc)
"  Provides a logical/common abstraction of the media to

the OS and eventually the programmer/user
"  Provides structures to keep data on disk logically

organized
# Files may be all over the place physically, but programmer would

never know!

"  Provides mechanism for securing files on physical disk
# Security not always respected without presence of OS

68

!  Lab 10: Design multi-view file system
"  As might want for MP3 player

!  In Ketterer again
!  Lab posted

c
69 70

!  Online reading/pointers
"  Unix File System Tutorial
"  Flash, SSD, Hard drive data sheets
"  Data found on hard drive articles

!  Courses
"  CIS121 – efficient data structures
"  CIS380 – operating systems

