

HARD DRIVES / HARD DISKS (HD)

- * A collection of metallic "platters"
- × Each platter covered with magnetic material
- $\star\,$ Magnetic charge 'stores' 1 bit of information

THROUGHPUT AND IMPLICATIONS

× Disk throughput and access time

- + 10ms latency
- + 280MB/s throughput (~1B/4ns)

× Observations?

- + Throughput faster than access time
- 10ms seek → Random bit access 100b/s
- + Sequential access 280MB/s
- × Conclude:
 - Want to exploit sequential access! × Read blocks of data

SEAGATE 2.5" DISK DRIVE

Specifications	160GB1	
Model Number	ST91608220AS	t
Interface Options	SATA 1.5Gb/s	T
Performance		T
Transfer Rate Sustained Internal (MB/s) Maximum External (MB/s)	44 150	5400 RPM
Flash Memory (MB)	256	†
Cache, Multisegmented (MB)	8	†
Average Seek (ms)	12.5	T
Average Latency (ms)	5.6	T
Performance Level	5400	Ī
//www.seagate.com/docs/pdf/data	sheet/disk/ds momentu	s 5400 psd.p

FLASH MEMORY

* A little like memory circuits we have learned about...

- + Except it is non-volatile or simply...persistent storage
- + Data won't go away when power is turned off
- + Based on the "floating gate" transistor

× Today's Examples

- Persistent storage in your MP3 player, cell phone × FYI: first iPod had a hard disk...
- + USB Flash drive
- + Solid-State Disk (SSD)

PERSISTENT STORAGE TECHNOLOGY Flash-drives / Hard-drives

lash-orives / Hald-orives

SAMSUNG 256MX8 NAND FLASH

Parameter		Symbol	Min	Typ	Mox	Unit	
Program Time		tPROG ⁽¹⁾		200	500	μS	
Dummy Busy Time for Multi Plane Program		tobsy	Y	1	10	μs	
Number of Partial Program Cycles	Main Array	Nop	-	-	1	cycle	
in the Same Page	Spare Array				2	cycle	
Block Erase Time		TBERS	- (2	3	ms	
RE Pulse Width			1RP	25	-	ns	
WE High to Busy			twe		100	ns	
Read Cycle Time			tRC 🤇	50	-	ns	>
CE Access Time			İCEA		45	ns	
RE Access Time			TREA	-	30	ns	
RE High to Output Hi-Z			1RHZ	-	30	ns	
CE High to Output Hi-Z			tcHz.	-	20	ns	
RE or CE High to Output hold			ton	15	-	ns	
RE High Hold Time			TREH	15	-	ns	
Output Hi-Z to RE Low			tiR	0	-	ns	
WE High to RE Low			twine	60	-	ns	
Device Resetting Time(Read/Program/Eras	0)		t RST	-	5/10/500(1)	μs	
Last RE High to Busy(at sequential read)			1RB	-	100	ns	
CE High to Ready(in case of interception by CE at read)			tory	-	50 + tr(R/B) ⁽²⁾	ns	
CE High Hold Time(at the last serial re	ad) ⁽²⁾		TCEH .	100	-	ns	

FLASH MEMORY

× Similar phenomenon

- +T ~= A + B×N
- + Large fixed expense A
 × Move in R and Θ for disk ~ 10ms
 > Erase block for flash ~ 3ms
- + High bandwidth B for sequential data × Both ... ~100s of MB/s

× Conclude

+ More efficient to operate on large chunks of data

WHAT IS A FILESYSTEM?

FILE REPRESENTATION

- × File is not just a sequence of bits
- × Contains some data about it
 - Length
 - Туре
 - Timestamp,
- Set of pointers to the data (when large) + Allowing the data to be non-sequential

Files \rightarrow I-NODES \rightarrow B-NODES/BLOCKS

FILES \rightarrow I-NODES \rightarrow B-NODES/BLOCKS
 Bnode's structure: bnode contains metadata (like a header) Description of data to follow Block type, File type, length Alternativelycan be table of pointers (indirect block) Can be a multi-level tree if necessary (doubly/triply indirect)
24 Bytes metadata 76: e0, 15.79 3172 Bytes 900 Bytes unused 78: e0, 15.79 80: e0, 15.79 77-
49

HOW KEEP TRACK OF FILES?

- × Add another file that tells us where the files are + Directory
- On ext3 filesystem...
 Directories are just files themselves!
 Pairs of (Name, i-node)
 - + Contain pointers to other nodes
- ...and since files can be directories
 Directories can contain directory files
 ...which can contain directory files...
- Leading to a directory hierarchy

Unix System File Structure This is called the "root" directory bin usr home1 etc Below Thome" is up to eniac admins ESE150 "Home directory" is /home1/elese150 or simply: ~ Escause the structure under "home" is typically different on all unix systems, a convention, and is always points to your home directory

PRECLASS 4

- × 10⁹ data items
- × Assume at bottom of balanced tree
- × Each tree-node has c leaves
- Directory i-node to hold c leaves needs + 32×c Bytes
- * How many tree nodes must visit?
- * How long to read a tree node?
- Time to lookup item (traverse tree)? + c=2, c=10³, c=10⁹

LOOKING AT INODES

* All directories start from "root" or / directory esel50@plus:/> cd / esel50@plus:/> ls -al total 164 drwxr-xr-x 25 root root 4096 Mar 31 05:44 .. drwxr-xr-x 25 root root 4096 Mar 31 05:44 .. drwxr-xr-x 2 root root 4096 Mar 31 05:44 bin drwxr-xr-x 18 root root 4096 Mar 31 05:44 bin drwxr-xr-x 18 root root 4096 Mar 31 05:44 .. 2 drwxr-xr-x 25 root root 4096 Mar 31 05:44 .. 2 drwxr-xr-x 25 root root 4096 Mar 31 05:44 .. 2 drwxr-xr-x 25 root root 4096 Mar 31 05:44 .. 2 drwxr-xr-x 4 root root 4096 Mar 31 05:44 .. 2 drwxr-xr-x 18 root root 4096 Mar 31 05:44 bin 2 drwxr-xr-x 18 root root 4096 Mar 31 05:44 bin 2 drwxr-xr-x 18 root root 4096 Mar 31 05:44 bin 2 drwxr-xr-x 18 root root 4020 Feb 19 13:37 dev First block of disk is inde 1, called "masterblock"

SUPERBLOCK

- \times For bootstrapping and file system management
 - Each file system has a master block in a canonical location (first block on device)
 - + Describes file-system type
 - + Root bnode
 - + Keeps track of free lists ...at least the head pointers to (bnodes, blocks)
- Corruption on superblock makes file system unreadable
 - →Store backup copies on disk

FORMAT DISK

- Identify all non-defective bnodes
 Defective blocks skipped
- + → those addresses not assigned to bnodes
 × Create free bnode data structure
- × Create superblock

DISK DATA SECURITY

- * How is security enforced?
 - + OS demands credentials for login
 - + User doesn't get direct access to hardware
 - + OS intermediates

SECURITY CAVEATS

× On standard Unix/Windows setups

- + Without the OS to provide protection, all the data is accessible
 - × Sometimes good for recovery
- On standard Unix/Windows setups
 rm/del doesn't make the data go away
 Also sometimes useful for recovery
- + Even format does not guarantee data overwritten
- See: Remembrance of Data Passed: A Study of Disk Sanitization Practices
- **what about iPhone?**

SECURITY EXAMPLE: FILE PERMISSIONS IN UNIX

- * Best to show with an example:
 - + Assuming you been typing in examples thus far, type: cd $\,\, \text{<-ksel}50$
 - Yese150
 Yese150 Puts you into the "ese150" subdirectory of your "~" home directory
 - ls -al × Passes two "arguments" to the Is command:
 - "a" (shows all files/even hidden)
 "l" (stands for long formatted listing, you will see)
 - $\mbox{ls}\ \mbox{-al}\ \mbox{will}\ \mbox{return}\ \mbox{the following directory listing:}$

student@minus:~/ese250> 1s -al total 12 drwxr=x--- 2 tfarmer tfarmer 4096 Nov 8 21:25 . drwxr=x--- 36 tfarmer tfarmer 8192 Nov 8 21:24 . -rwr=r----- 1 tfarmer tfarmer 0 Nov 8 21:25 file1.txt -rw-r----- 1 tfarmer tfarmer 0 Nov 8 21:24 file2.txt

OS'S AND THEIR FILESYSTEMS

- Typically an OS has a native filesystem it supports:
 - Early PC OS: DOS (Disk Operating System) File system: FAT (File Allocation Table)

 - Early Apple OS: Macintosh's "System" File system: MFS (Machintosh File System)
 - Today's PC OS: Windows
 - File System: NTFS (New Technology File System)
 - Today's Apple OS: Mac OSx File System: HFS+ (Hierarchical File System)
 - Today's Linux OS: Ubutnu, Debian, Fedora, Red Hat, SUSE, etc)
 - File System: EXT (Extended File System)
- Now a days, many OS include support for more than one file system
- Example...CDs/DVDs have their own file system: CDs: CDFS (Compact Disc File System): ISO 9660 DVDs: UDF (Universal Disk Format)

BIG IDEAS...FILESYSTEM

× Filesystem

- Responsible for governing/organizing the persistent storage media (harddrive/flash/etc)
- Provides a logical/common abstraction of the media to the OS and eventually the programmer/user
- Provides structures to keep data on disk logically
- organized
- Files may be all over the place physically, but programmer would never know!
- Provides mechanism for securing files on physical disk Security not always respected without presence of OS

THIS WEEK IN LAB

- x Lab 10: Design multi-view file system + As might want for MP3 player
- × In Ketterer again
- × Lab posted

LEARN MORE AT PENN!

× Online reading/pointers

- Unix File System Tutorial Flash, SSD, Hard drive data sheets
- Data found on hard drive articles
- × Courses
 - CIS121 efficient data structures
 - CIS380 operating systems