
ESE150 Spring 2019

University of Pennsylvania
Department of Electrical and System Engineering

Digital Audio Basics

ESE150, Spring 2019 Final Monday, May 6

• Exam ends at 5:00pm; begin as instructed (target 3:00pm)
• Do not open exam until instructed to begin exam.
• Problems weighted as shown.
• Calculators allowed.
• Closed book = No text or notes allowed.
• Provided reference materials on next to last page.
• Show work for partial credit consideration.
• Unless otherwise noted, answers to two significant figures are sufficient.
• Sign Code of Academic Integrity statement (see last page for code).

I certify that I have complied with the University of Pennsylvania’s Code of Academic
Integrity in completing this exam.

Name: Solution

1 2 3 4

a b c.i c.ii d.i d.ii a b c d a b.i b.ii c.i c.ii c.iii

1 4 3 2 2 3 1 1 8 5 10 5 2 2 2 2 2

5 6 7 Total

a b c d e a b c d e f a b.i b.ii b.iiii b.iv

3 3 3 3 3 2 2 2 1 5 3 7 2 2 2 2 100

1



ESE150 Spring 2019

Hypothetical cat auditory critical bands:

Band Number Low High

1 45 100
2 100 200
3 200 300
4 300 400
5 400 500
6 500 600
7 600 800
8 800 1200
9 1200 1500

10 1500 2000
11 2000 2500
12 2500 3000
13 3000 4000
14 4000 5000
15 5000 6000
16 7000 8500
17 8500 10000
18 10000 12000
19 12000 15000
20 15000 18000
21 18000 22000
22 22000 25000
23 25000 30000
24 30000 35000
25 35000 42000
26 42000 46000
27 46000 50000
28 50000 56000
29 56000 60000
30 60000 64000

While the cat auditory range to 64,000 Hz is real. This auditory band structure is a synthetic
construct generated just for this problem and likely does not represent reality.

2



ESE150 Spring 2019

1. Continuing our cat audio compression from the midterm, we again consider that a
cat can hear up to 64KHz and likely has similar critical band limitations to humans.
Consider the hypothetical band structure shown on the facing page, and make the
simplifying assumption that we only need to represent the strongest 4 frequencies
in each band over a 25 ms time window to 4 Hz resolution. Assume 16b amplitude
quantization for each frequency. What bandwidth do we need to continuously send
compressed cat audio in real time (send compressed data for 25 ms of sound in 25 ms)?

(a) Exploiting this structure, what do you store for each 25 ms window and how many
bits does this require?

Same as midterm.
Store 4 (frequency, amplitude) pairs in each band, for a total
of 4× 30 = 120 frequencies.

Since we only want 4 Hz resolution, we need log2

(
64,000

4

)
=

14b to represent each frequency.
Total: 120× (14 + 16) = 3600
As noted on midterm solutions, we can tighten this, using
fewer bits to select frequencies in each band.

(b) What raw bandwidth does this require? [state in bits/second]

3600b / 25 ms = 144,000 b/s
(c) Assume we form one TCP/IP over ethernet packet for every 25 ms window. Each

packet has a header and checksum that occupies 40 Bytes along with the com-
pressed payload data for one 25 ms window.

i. What total bandwidth is required including the packet header and checksum?
[state in bits/second]

(3600b+40× 8b) / 25 ms = 156,800 b/s ≈ 160Kb/s

3



ESE150 Spring 2019

ii. List at least 3 data fields that exist in the packet header (not including the
checksum):

source port, source IP, destination port, destination IP,
sequence number, packet length

(d) Given that the maximum payload size for TCP/IP over ethernet is 1500 Bytes:

i. How many 25 ms frames can you pack into one TCP/IP packet?⌈
1500×8

3600

⌉
= 3

ii. What is the total bandwidth requirement to achieve real-time transmission
when you pack this many 25 ms frames into one TCP/IP packet? [state in
bits/second]

(3 × 3600b+40 × 8b) / (3 × 25) ms = 148.267 b/s ≈
150Kb/s

4



ESE150 Spring 2019

2. Continuing with the compressed cat audio from the previous question, we want to
understand the computational requirements for decoding cat audio. At the receiving
end, we will need to decode the data. Consider the following code:

// some headers and definitions omitted

#define REC_LENGTH 2

#define FREQUENCY_OFFSET 1

#define AMPLITUDE_OFFSET 0

void decode(uint16_t *freq, uint16_t *pcm25ms)

{
for (int i=0;i<PCM_SAMPLES_IN_WINDOW;i++) { // contributes 3 instructions

// per loop iteration

uint16_t v=0;// 1 instruction

for (int j=0;j<FREQS;j++) { // contributes 3 instructions per loop iteration

int f=(freq[j*REC_LENGTH+FREQUENCY_OFFSET])<<2; // 4 instructions

uint16_t cycles=((int)(f*i<<16)/SAMPLE_INTERVAL)%(1<<16); // 4 instructions

uint16_t sine_index=2*PI*cycles; // 1 instruction

int a=freq[j*REC_LENGTH+AMPLITUDE_OFFSET]; // 2 instruction

v+=a*SINE_TABLE[sine_index]; // 3 instructions

}
pcm25ms[i]=v; // 1 instruction

}
}

(a) Assuming we sample at the Nyquist rate to capture frequencies up to 64KHz,
what is PC SAMPLES IN WINDOW for the 25 ms window?

Sample at Nyquist rate = 2× 64 KHz.
Samples in one 25 ms window is (128000×0.025)=3200 sam-
ples.

(b) From Problem 1, what is FREQS?

120
(c) Based on the instruction annotations and your answers to (a) and (b), how many

instructions are required for one call to decode (equivalently for decoding on 25 ms
frame of cat audio)?

5× 3200 + 3200× 120× 17=6,544,000≈6.5M
(d) How fast must a processor run to decode the cat audio in real-time? Specifically,

to decode one 25 ms window in 25 ms? [instructions/second]

6,544,000/(0.025 s)≈260M instructions/second

5



ESE150 Spring 2019

3. Implement the following truth table using inverters and 2-input AND and OR gates.

a b c d out

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 1 a · /b · /c · d
1 0 1 0 0

1 0 1 1 0

1 1 0 0 1 a · b · /c · /d
1 1 0 1 1 a · b · /c · d
1 1 1 0 0

1 1 1 1 0

y = a · /b · /c · d + a · b · /c · /d + a · b · /c · d
Can optimize to (not required for ESE150): a · /c · d+ a · b · /c

No Optimization Optimized

b

a

c

d

d

b

c

a

6



ESE150 Spring 2019

4. For the midterm, you sketched a design to translate cat-audible sounds (0 to 64KHz)
down to human-audible sounds (0-22KHz).

(a) Give one reason why the sketch you turned in for the exam would likely not be

patentable?

• not reduced to practice

• frequency shifting hearing aids a prior art? this is not a

non-obvious extension?

• not first to file?

• didn’t identify need (exam or engineer hypothesized in the

exam did); would need to include that engineer in filing.

(b) Assuming you wrote your own code from scratch to implement the translator:

i. How would that help in potentially patenting a translator?
Would represent reducing the idea to practice.

ii. Can you copyright your code? (explain why or why not)

Yes. Software is considered an expression which is copy-
rightable.

(c) After writing your code as an App for a popular smart phone, you discover that the
audio input to the Analog-to-digital converter in the phone has low-pass filters
that only allow frequencies below 22 KHz to be seen by the Analog-to-digital
converter. Based on this, you decide it may be better to build your own hardware
device to perform the cat-audible to human-audible sound conversion.

i. Why did the smart phone have this low-pass filter?
Most humans can only hear up to 22 KHz, and MP3s only
encode ulp to 22 KHz. Need to filter out higher frequen-
cies before sampling to avoid aliasing.

ii. How does audio capture for your hardware design need to differ from the
smart phone audio capture?
Change the low-pass filter to allow frequencies up to 64 KHz.

iii. Compare the patentability of the hardware device converter versus the software-
only App converter?
Pure software is not typically patentable. A machine or
hardware that includes software is. So, you would be
patenting the full hardware system including the design
of the low-pass filter.

7



ESE150 Spring 2019

5. An engineer decides to create a c(h)at (a cat-audio version of skype or face time)
for computer-to-computer cat audio conferences. Being concerned about bandwidth
requirements and quality, she generalizes the cat-audio compression from Problem 1.
It now has 3 parameters:

(a) amplitude quantization

(b) frequency resolution (quantization)

(c) number of frequencies to keep per critical band

The c(h)at compressor takes these 3 arguments and compresses sound accordingly,
packetizing it for communication over a network (as in Problem 1). The idea is that
users will adjust the parameters based on the bandwidth available to them. For each
of the following User Interfaces for this task: (a) rank their ease-of-use from (1) easiest
to (5) hardest to use; (b) Identify strengths and weaknesses (at least one of each) [hint:
general, cat-owning users are unlikely to be familiar with concepts like critical bands
and only dimly aware of bandwidth.]:

8



ESE150 Spring 2019

(a) 3 text boxes that allow you to type any text for the 3 parameters and a start
button to indicate you have set the values and are ready to start the c(h)at.
When any of the values in the text box are invalid, prints an error message “invalid
parameters”. When the configuration exceeds the bandwidth available on the link,
it drops packets silently (without showing any indication about dropped packets).

Frequncies/Band

Frequency Resolution

Start

123 space

Q W E R T Y U I O P

A S D F G H J K L

Z X C V B N M
return

End

Frequencies/Band Input Value Here

Frequency Resolution Input Value Here

Amplitude Resolution Input Value Here

Ease-of-Use Rank
5

Strength
(almost none)

All input on one screen
Weakness

Exposes low level parameters user typically won’t under-
stand

Doesn’t constrain inputs to sensible values

Provides no useful feedback on how to fix invalid param-
eters

Even when user puts in valid numbers, gives no hint
about bandwidth requirements

Doesn’t give visibility into what’s happening when drops
packets

9



ESE150 Spring 2019

(b) Program has a start button. The program measures the bandwidth on the link,
internally determines the values for the 3 parameters to not exceed 80% of the
measured link bandwidth, and uses those. When packets are dropped, it remea-
sures link bandwidth, updates the parameters accordingly, and reports the current
bandwidth in use to a status bar at the bottom of the c(h)at window.

StartEnd Bandwidth: 360Kb/s

Ease-of-Use Rank
1

Strength
Takes care of selecting bandwidth and parameters for
user

Visibly reports bandwidth state

Gets started with minimal, single button click

Re-adjusts parameters as needed without user request
Weakness

As stated, never increases bandwidth when more band-
width becomes available; only degrades

User doesn’t have control of how bandwidth allocated

Not able to limit bandwidth lower than 80% of link avail-
ability

10



ESE150 Spring 2019

(c) Five buttons to select common bandwidth choices, an optional text box, and a
sixth button to set the bandwidth to the value provided in the optional text
box. Each of the six buttons start the transfer. When the configuration exceeds
the bandwidth available on the link, it: (a) drops to the next smallest common
bandwidth, if configured to a common bandwidth, or (b) drops the bandwidth by
10% if the bandwidth was specified in the text box.

High
2 Mb/s

144 Kb/sLow
72 Kb/s

Medium
288 Kb/s

1 Mb/s

Set 
Bandwidthor Type Bandwidth

123 space

Q W E R T Y U I O P

A S D F G H J K L

Z X C V B N M
return

Push a button to select a bandwidth:

Ease-of-Use Rank
2

Strength
In common case, can start with a single button click

Also supports broader choices on same screen

Updates parameters to adjust to bandwidth available au-
tomatically

Simplifies choice to bandwidth; hides internal parameters
Weakness

Doesn’t constrain typed input for bandwidth

As described, doesn’t show what’s happening as band-
width is reduced

11



ESE150 Spring 2019

(d) 3 sliders that allow you to select choices within the allowed range of values for each
of the 3 parameters, a calculate button, and a start button. When the calculate or
start button is selected, the application will calculate and report the bandwidth
required to support the specified parameters. When the configuration exceeds the
bandwidth available on the link, it drops packets and prints “packets dropped”
in a status bar at the bottom of the c(h)at window.

Frequncies/Band

Frequency Resolution

Start

123 space

Q W E R T Y U I O P

A S D F G H J K L

Z X C V B N M
return

End

Frequencies/Band

Frequency Resolution

Amplitude Resolution

CalculateBandwidth: 200Kb/s

4000 Hz

8000

1b

1

16b

1 Hz

Ease-of-Use Rank
4

Strength
Limits inputs to legal values

Performs bandwidth calculation for user

Provides some feedback about dropped packets
Weakness

Exposes internal parameters user may not understand

Forces user to set bandwidth

Provides no feedback on bandwidth available

Packet dropped feedback doesn’t give user a sense of how
much over bandwidth they are

User must restart to change configuration

12



ESE150 Spring 2019

(e) One slider to specify the target bandwidth and a start button. The program
internally determines a value for the 3 parameters and uses those. When the
configuration exceeds the bandwidth available on the link, it drops packets and
reports the packet drop rate on the screen.

StartEnd

Bandwidth Target
2Mb/s 20Kb/s

Bandwidth: 1600Kb/s

Ease-of-Use Rank
3

Strength
Simple with single slider

Hides internal parameters

Gives useful information about how much over band-
width the configuration is

Weakness
Burden is on user to chose bandwidth

User must restart to change configuration

13



ESE150 Spring 2019

6. Consider an Internet-of-Things cat collar with a microphone, an analog-to-digital con-
verter, a small processor, a wireless transmitter, and small battery. We want to use
this to record compressed cat audio onto a server. To maximize battery life, where
should we perform compression on the data? Assume:

• Capture 64KHz cat audio.
• Compress using the scheme from Problem 1.
• Sending one bit over wireless costs 1 µJ (10−6 J).
• Executing one instruction on the processor costs 1 nJ (10−9J) per instruction.
• The dominant cost in compression is the Fourier Transform to convert to frequen-

cies. Performing an efficient FFT takes 200 instructions per sample point.
• Detection applies a threshold to the frequencies in the frame. If all frequencies

are below an identified threshold, the frame is considered silent and does not need
to be stored.

– Assume detection takes one additional instruction per sample when already
doing compression.

– Detection for uncompressed data requires 5 instructions per sample.

• On average 95% of frames will be classified as silent.
• You may ignore the overhead of packet headers for the calculations in this problem.
• Uncompressed PCM samples 16b each.

(a) How much energy to send each uncompressed 25 ms frame? [Joules]

3200× 16× 10−6J = 0.0512J
(b) How much energy to send each compressed 25 ms frame? [Joules]

3600× 10−6J = 0.0036J
(c) How much energy to compress a 25 ms frame (without detection)? [Joules]

3200× 200× 10−9J=0.00064J

14



ESE150 Spring 2019

(d) How much energy to detect if a frame has data? [Joules]

i. on uncompressed data? 3200× 5× 10−9=16× 10−6J
ii. on compressed data? 3200× 1× 10−9=3.2× 10−6J

(e) What strategy maximizes the battery life? (detail what computation you perform

on the collar processor and what data you send out of the collar processor.)

• Compress data on collar and detect if above threshold.

• Send out compressed data when exceeds threshold.
Better solution. Instructor didn’t figure out until a week later preparing solutions.
Will take both.

• Detect if above threshold on uncompressed

• When above threshold

– Compress data

– Send out compressed data

(f) For this strategy, what is the average energy required per hour of operation?
[Joules]

Compress before detect: (0.0036×0.05+0.00064+0.0000032)×
40× 3600=118.54 ≈120J
Detect before compress (0.0036 × 0.05 + 0.00064 × 0.05 +
0.000016)× 40× 3600=32,823 ≈33J
Common case is don’t have to compress. So, ok to spend
larger energy to detect to avoid spending energy to compress
most of the time.

A coin-sized battery (e.g. CR2032) holds 720J. A 9V battery holds about 20,000J.

15



ESE150 Spring 2019

7. As discussed in class, a computer with multiple links can help route packets. If it
receives a packet that isn’t destined for itself, it can send it out along a link that gets
the packet closer to the destination. Consider a computer:

• one input link and two output links

• packet length 1000 Bytes (as simplification for exam, assume all packets fixed-size
at this length)

• processor spends 100,000 cycles processing each forwarded packet

• the processor on the computer executes 3 Billion (3× 109) cycles per second.

(a) What fraction of the processor’s cycles are spent on routing when supporting
100 Megabit/second network links.

108
8×1000×105

3×109
=0.41

(b) If the computer also kept a record of the IP (IPv4) address of every computer
that sent messages through it in a day:

i. maximum number of sources?
108

8×1000 × 24× 3600 = 1.08× 109 ≈ 1 Billion
ii. Uncompressed space to store those sources?

4× 1 Billion = 4GB
iii. How much are you likely to be able to compress the list of sources if you

Huffman code the list of sources and the computer typically only sees 1000
different sources per hour.

Assume the 1000 sources occurr equally frequently (worst=least
compression) case. Need 10b to represent those cases. So,
store about 10b per packet rather than 32b. So, compress
to 1/3 (about 10/32≈31%) of the uncompressed case.

iv. How else might you compress a day’s worth of source data? and what com-
pression would you get if you only saw 1000 different sources per hour?

• Only keep track of unique sources. So only store each

source once.

• At most 24× 1000=24,000 sources in a day.

• 109/
(
24× 103

)
≈42,000× compression, or 2.4× 10−5

of the worst-case, uncompressed data.

16



ESE150 Spring 2019

Human auditory critical bands:

Band Number Low High

1 20 100
2 100 200
3 200 300
4 300 400
5 400 510
6 510 630
7 630 720
8 720 920
9 920 1080

10 1080 1370
11 1270 1480
12 1480 1720
13 1720 2000
14 2000 2320
15 2320 2700
16 2700 3150
17 3150 3700
18 3700 4400
19 4400 5300
20 5300 6400
21 6400 7700
22 7700 9500
23 9500 12000
24 12000 15500

17



ESE150 Spring 2019

Code of Academic Integrity

Since the University is an academic community, its fundamental purpose is the pursuit of
knowledge. Essential to the success of this educational mission is a commitment to the
principles of academic integrity. Every member of the University community is responsible
for upholding the highest standards of honesty at all times. Students, as members of the
community, are also responsible for adhering to the principles and spirit of the following
Code of Academic Integrity.*

Academic Dishonesty Definitions

Activities that have the effect or intention of interfering with education, pursuit of knowledge,
or fair evaluation of a student’s performance are prohibited. Examples of such activities
include but are not limited to the following definitions:

A. Cheating Using or attempting to use unauthorized assistance, material, or study aids
in examinations or other academic work or preventing, or attempting to prevent, another
from using authorized assistance, material, or study aids. Example: using a cheat sheet in
a quiz or exam, altering a graded exam and resubmitting it for a better grade, etc.

B. Plagiarism Using the ideas, data, or language of another without specific or proper
acknowledgment. Example: copying another person’s paper, article, or computer work and
submitting it for an assignment, cloning someone elses ideas without attribution, failing to
use quotation marks where appropriate, etc.

C. Fabrication Submitting contrived or altered information in any academic exercise. Ex-
ample: making up data for an experiment, fudging data, citing nonexistent articles, contriv-
ing sources, etc.

D. Multiple Submissions Multiple submissions: submitting, without prior permission,
any work submitted to fulfill another academic requirement.

E. Misrepresentation of academic records Misrepresentation of academic records: mis-
representing or tampering with or attempting to tamper with any portion of a student’s
transcripts or academic record, either before or after coming to the University of Pennsyl-
vania. Example: forging a change of grade slip, tampering with computer records, falsifying
academic information on ones resume, etc.

F. Facilitating Academic Dishonesty Knowingly helping or attempting to help another
violate any provision of the Code. Example: working together on a take-home exam, etc.

G. Unfair Advantage Attempting to gain unauthorized advantage over fellow students in
an academic exercise. Example: gaining or providing unauthorized access to examination
materials, obstructing or interfering with another student’s efforts in an academic exercise,
lying about a need for an extension for an exam or paper, continuing to write even when
time is up during an exam, destroying or keeping library materials for ones own use., etc.

* If a student is unsure whether his action(s) constitute a violation of the Code of Academic
Integrity, then it is that student’s responsibility to consult with the instructor to clarify any
ambiguities.

18


