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LAB 08 
 
In this lab we will gain an understanding of the instruction-level implementation of computation on a 
microprocessor by: 

1. Using Arduino to perform the Fourier Transform on sampled data in the time domain, converting it 
to the frequency domain. 

2. Timing your Fourier Transform to see how long the operation takes to perform. 
3. Calculating number of cycles each instruction takes and calculating the time of execution using the 

assembly file.  
 

Background: 
 
Let us learn first what a .elf file and .hex file is. 
ELF is an acronym for Executable Linking Format. Files that contain the .elf file format are system files 
that store executable programs, shared libraries and memory dumps.  
A HEX file is a hexadecimal source file typically used by programmable logic devices.  
.elf and .hex files are both generated in the process of uploading Arduino code to the device.  
 
In this lab you will be compiling Arduino code, which generates a .elf file. We will then generate 
assembly code from the .elf file to observe how your code works at the processor instruction level. You 
will see which instructions get executed in what order and how many times. This will give you an idea of 
which instructions take longer time and how to reduce your execution time. 
 
In previous labs we’ve performed DFT for various applications without thinking about the 
implementation. We have had programs which run for several seconds and sometimes minutes!  
Now we will look deeper at how the machine executes your program and how much time that takes.  
From your lecture, you know what processor instruction are and how to read them. Let’s work with them 
to understand the execution time of your program.  
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Prelab: Obtaining the Assembly code 
• In this section, we’ll compile our Arduino code and obtain the location of a temporary .hex file  
• We’ll convert the .hex file to assembly code.  
 
Optimizing our code requires that we view the generated machine code (hex) in assembly language. This 
allows us to know how things work at the instruction level. When we review assembly code we 
understand how the computer’s hardware works and functions on a low-level. This allows us to calculate 
how many clock cycles each instruction takes and how to optimize our code/logic to achieve faster 
execution. Make sure to read the entire lab as a part of the pre-lab. 
 
1. First let us obtain the location of our temporary folders created during the compilation of the Arduino 

code: 
 
2. We will be compiling the code to compute the Fourier Transform of a discrete sample data and detect 

the peak frequency present in it. Go over the code and understand the math behind it.  
 

3. Paste the following code in the Arduino IDE and name your file FT_PeakDetection. 
#define MAX_SAMPLES 128    //make it a power of 2 
#define SAMPLING_TIME 0.0002 //Hz, must be less than 10000 due to ADC 
#define pi 3.1416 
#define scale_factor 100 
int samples[MAX_SAMPLES] ; 
boolean samplesReceived = false ; 
int sineref[MAX_SAMPLES]; 
int cosref[MAX_SAMPLES]; 
long ask; 
long ack; 
double freq[MAX_SAMPLES]; 
double samp_freq; 
int k = 0 ; 
int i ; 
double fft_abs; 
 
void setup() { 
    Serial.begin(9600);  // setup serial monitor speed 
    samp_freq = 1/(SAMPLING_TIME + 0.000125);     //Analog read  delay 
} 
 
long dotproduct(int length, int *a, int *b) { 
    long sum=0L;      // Initializing long  
    for(int i=0;i<length;i++){ 
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        sum+=(long)a[i]*(long)b[i]; //type casting 
        } 
    return(sum);  
} 
 
void loop() { 
  for(int i = 0; i < MAX_SAMPLES; i++) { 
    samples[i] = analogRead(A0); // read input from A0  
    delayMicroseconds(200); 
    samplesReceived = true ; 
  } 
 
 
  if (samplesReceived){ 
    for(int i = 0; i < MAX_SAMPLES; i++) { 
    Serial.println(samples[i]);  
  } 
   for(k =0;k<MAX_SAMPLES;k++){ 
      for (i=0;i<MAX_SAMPLES;i++){ 
        sineref[i]=(int)(sin(2*pi*k*i/MAX_SAMPLES)*(1<<10));  //sine and cosine samples will be 
between -1 and 1, so multiply those by 2^10 and round 
        cosref[i]=(int)(cos(2*pi*k*i/MAX_SAMPLES)*(1<<10)); 
      } 
      ask=(dotproduct(MAX_SAMPLES,samples,sineref))/(MAX_SAMPLES*scale_factor);      // 
scaling it 
      ack=dotproduct(MAX_SAMPLES,samples,cosref)/(MAX_SAMPLES*scale_factor); 
      freq[k] = k*samp_freq/(MAX_SAMPLES-1); 
     /* Serial.print("For :"); 
       Serial.println(freq[k]);        
       Serial.println(fft_abs);    printing the amplitude for each freq */ 
       fft_abs = abs(ask)+abs(ack);   // abs returns the modulous      
       
      if (fft_abs>1000){ 
        Serial.println("Peak  found at "); 
          Serial.println(freq[k]); 
        }    
    } 
    while(1);       //Run code once 
  } 
} 

4. Now to see compiler outputs, do the following to change the settings of the Arduino IDE: 
For MacOs follow steps 5 through 11. For Windows skip to step 12. 
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5. Enable “Show Verbose Output during Compilation and Upload”. 
6. Now, compile your code to see the output files (ELF, BIN, HEX files).  
7. Once you compile you will see something like this: 
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The directory 
/Users/vipulasateesh/Documents/Softwares/Arduino.app/Contents/Java/hardware/tools/avr/bin 
contains a file called avr-objdump which will be used in step 5. Scroll right to see the .elf file’s 
location. 

8. Now let’s generate assembly code from the .elf file generated. Open your terminal (search in spotlight 
if you don’t know where to find it) and type the following.  

a. cd /var/folders/xm/gjy8bdj12qx81bm3jzfmnnlm0000gn/T/arduino_build_232470 
being sure to replace the path after cd with the specific path you found above.  

b. pwd 
c. ls 
You should see something like:  

 
The command cd is used to open the directory which is mentioned after the command.  The 

command ls is used to obtain all the files and folders in the current directory.  
Note the FFT_ESE150Lab8.ino.elf file, which is used in our next step.  

 
9. Now, generate the assembly file. Here again you should replace the location with the specific 

location you obtained from the Arduino console. Also observe here, d.txt is the text file you’re 
storing the assembly code in, and FFT_ ESE150Lab8.ino.elf is the name of your Arduino file.  
/Users/vipulasateesh/Documents/Softwares/Arduino.app/Contents/Java/hardware/tools/avr/bin/avr-
objdump -S FFT_ ESE150Lab8.ino.elf >d.txt 

Note: There are other ways to generate the assembly code and some applications do it for us by taking in 
the elf file. For more information on this you can refer to the link below as an example. 
https://sourceforge.net/projects/arduino-to-assembly-converter/ 
10. Copy paste the text file onto another text file which is more accessible. To do that type in the 

following command and replace the destination location with the directory of your choice.  
cp -X d.txt /Users/vipulasateesh/Documents/Penn/d1.txt 
 

11. You can now skip to step 20. 
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12.   
 
Enable “Show Verbose Output during Compilation and Upload”. 

13. Now, compile your code to see the output files (ELF, BIN, HEX files). 
14. Once you compile you will see something like this: 

 

 
15. The directory "C:\Program Files (x86)\Arduino\hardware\tools\avr/bin/" contains a file called avr-

objdump which will be used in step 5. The .elf’s location is to the right. 
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16. Now let’s generate assembly code from the .elf file generated. Open a PowerShell terminal (search in 
the Start Menu if you don’t know where to find it) and type the following.   

a. cd "C:\Users\andrewme\AppData\Local\Temp\arduino_build_92162" being sure to replace 
the path after cd with the specific path you found above. 

b. pwd 
c. ls 
You should see something like: 

 
17. The command cd is used to open the directory which is mentioned after the command.  The command 

ls is used to obtain all the files and folders in the current directory.  
Note the sketch_mar19.ino.elf file, which is used in our next step.  

18. Now, generate the assembly file. Here again you should replace the location with the specific 
location you obtained from the Arduino console. Also observe here, d.txt is the text file you’re 
storing the assembly code in, and sketch_mar19.ino.elf is the name of your Arduino file. Note the & 
and ` characters as well as the location of the quotes. 
&"C:\Program Files (x86)\Arduino\hardware\tools\avr/bin/avr-objdump.exe” `-S  
"C:\Users\andrewme\AppData\Local\Temp\arduino_build_92162/sketch_mar19a.ino.elf" 

 
Note: There are other ways to generate the assembly code and some applications do it for us by taking in 
the elf file. For more information on this you can refer to the link below as an example. 
https://sourceforge.net/projects/arduino-to-assembly-converter/ 
19. Copy paste the text file onto another text file which is more accessible. To do that type in the 

following command and replace the destination location with the directory of your choice.  
cp d.txt /Users/vipulasateesh/Documents/Penn/d1.txt 
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20. Now you have created d1.txt with your assembly code in it!  
Familiarize yourself with the assembly code. 
The more you look through it, the easier the lab will be.  

21. Go over the code and identify the sections associated with a line of Arduino C code. 
a) Search for (e.g. in the text editor Press CTRL+F and enter)  

sineref[i]=(int)(sin(2*pi*k*i/MAX_SAMPLES)*(1<<10)); 
to see how this command is executed.  

b) You will obtain something like this: 
70e: 41 01        movw r8, r2 

     710: 03 2c        mov r0, r3 
     712: 00 0c        add r0, r0 
     714: aa 08        sbc r10, r10 
     716: bb 08        sbc r11, r11 
     718: c5 01        movw r24, r10 
     71a: b4 01        movw r22, r8 

71c: 0e 94 f2 04  call 0x9e4 ; 0x9e4 <__floatsisf> 
c) Recall we looked at instructions like add in lecture. For example the  call 0x9e4 instruction on the 

address 71c means the control is now being passed on to the instruction by the address 0xc9e 
<__floatsisf>.  See Appendix for more details of Arduino instructions.  
 

d) Look up the dotproduct: 
 
int dotproduct(int length, int *a, int *b)  
This is actually a bit tricky.  The compiler copied the code for dotproduct into the loop() routine at 
the places where it was called, so you will actually see that signature line 4 times.  To confuse 
matters further, it shows it twice for each time it is copied into the code (once for computing ask, 
once for computing ack).   Starting from the first occurrence, find where it performs the multiply 
(hint: __mulhisi3 subroutine), where it does the accumulating addition, and where it performs a 
branch back to the top of the loop.  Notice that a divide follows the branch at the end of the loop.  
This divide (__divmodsi4 subroutine) corresponds to the division you see in loop() following the 
dotproduct() call in the C code.  Following that you can see where it stores the result into the ask 
variable.  From these landmarks, identify and extract the code for the dotproduct. 
 
Look further down and identify the dotproduct code for the computation of the ack variable.  Note 
that it is the same sequence of instructions.  
 

22. Extract the code for the  __mulhisi3 subroutine that is used in the multiplication.   Include all the 
routines that it calls or jumps to. 

23. You will need these in Section 3 (and your report). Show your extracted code to your TA for prelab 
checkoff. 

 
Lab Procedure: 
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Lab – Section 1: Fourier Transform using an Arduino 
• In this section we’ll use Arduino to compute the Fourier Transform of a signal and recheck the most 

prominent frequency. 
 
1. We will set up the function generator we used in previous labs 

a. Set the output to high-Z. 
b. Select a 300Hz sine wave with 2Vpp and 1V offset. 
c. Turn on the output, attach a BNC to BNC cable, and plug it into Channel 1 on the scope. 

2. Use your Arduino to sample the 300 Hz sinusoid (see lab 1 for help!) 
3. Run the code from the prelab to compute the Fourier Transform and print the most prominent 

frequencies. 
4. Identify which of the frequencies printed is the frequency of your signal and what the others could be.  

(Note: we haven’t performed any calibration calculations to identify which frequency corresponds to 
each k.) 
 

  



ESE 150 – Lab 08: Machine Level Language 
 

ESE 150 – Lab 8  Page 10 of 16 
 

Lab – Section2: Timing the Dot Product 
 
• In this section, you’ll time the dotproduct using the in-built micros() command.  
• Finally, you’ll calculate different size dotproducts and time taken for each.  
 
1. Take a look at the micros() function in the Arduino library by clicking on the link below. 

https://www.arduino.cc/reference/en/language/functions/time/micros/ 
2. Initialize two variables that will be used to calculate the time in micro seconds at two different points 

in your program to calculate how much time the Arduino takes to execute that section. 
 
unsigned long microseconds1; 
unsigned long microseconds2; 
unsigned long time_elapsed; 
 

3. Call the micros() function before and after the calculation of the dot product as shown below. 
long dotproduct(int length, int *a, int *b) { 
    microseconds1 = micros(); 
    long sum=0L;      // Initializing long  
    for(int i=0;i<length;i++) 
    sum+=(long)a[i]*(long)b[i]; //type casting 

 microseconds2 = micros(); 
 time_elapsed = (microseconds2 - microseconds1); 
 Serial.println(time_elapsed); 

    return(sum);  
} 
 
 

4. The variable time_elapsed will contain the execution time in micro seconds.  
5. Now let’s repeat the process for different size dotproducts and measure the execution time.  
6. Replace the value of MAX_SAMPLES with different sizes (in powers of 2, like 64, 32,…,2) as shown 

below.   
#define MAX_SAMPLES 64 

7. Try increasing the number of samples to 264 and run the program. Report the console message and 
reason behind it.  

8. Tabulate and plot the values in Excel (time vs MAX_SAMPLES). Show the TA the plot before you 
continue.  

9. Review the plot and identify an equation that approximates the curve.   
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Lab – Section 3: Computing the runtime for the Dot Product 
 
• In this section we will go through the assembly code generated and check the number of cycles each 

instruction takes 
• Finally, you’ll calculate the runtime of the dotproduct 
 
1. Refer to the dotproduct Assembly code generated and extracted in the pre-lab.  
2. Now refer to the Appendix to see how many clock cycles each instruction takes (For example, add, 

mul, ld, mov). 
3. Next calculate clock cycles.   

a. Total Cycles is defined by the following: 

                                 
Where ICI is the number of instructions for a given instruction type i, CCi is the clock-cycles for that 
instruction type. The summation sums over all instruction types for a given benchmarking process. 

b. Make a spreadsheet table with one line for each instruction in dotproduct and __umulhisi3 (and 
all the routines that __mulhsi3 calls). 

i. Add two columns to the table for cycles for each of the instructions. 
1. One column for the maximum number of cycles the instruction takes 
2. One column for the minimum number of cycles the instruction takes 

(see the Appendix for more details on this) 
ii. Add column for number of times it is called.  

Hint: the number of times some instructions are called will depend on the value of 
MAX_SAMPLES, so actually create four columns here: 

• A max and min column for the number of multiples of MAX_SAMPLES 
the instruction is called 

• A max and min column for the number of times called that is not a multiple 
of MAX_SAMPLES 

      So, together, you can express every instruction as a linear equation: 
a×MAX_SAMPLES+b  

c. Put MAX_SAMPLES in a spreadsheet cell. 
d. Add an equation that uses the table values to calculate total cycles. 

Make this use the MAX_SAMPLES cell so you can get it to compute a Total Cycles estimate 
for each of the different MAX_SAMPLES values you previously measured. 

                                               
4. Add an equation using the above to calculate the Execution time using the formula below: 

 
Execution Time = 𝑇𝑜𝑡𝑎𝑙	𝐶𝑦𝑐𝑙𝑒𝑠	 × 𝑐𝑙𝑜𝑐𝑘	𝑡𝑖𝑚𝑒 

 
Here the clock frequency is 16MHz. 
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5. Compare the time obtained in this to the time obtained from Section 2.  
6. Show the TAs the value and explain your discrepancy. This is your exit check off.  
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Postlab 
 

1. Reviewing the Instruction Set table in the Appendix:  
• Why does the MUL takes more clock cycles than ADD? 

2. If we were to design an enhanced Arduino (ATmega328) that included a hardware 16b×16b multiplier 
that was supported by a new instruction that could multiply two unsigned 16b integers in one cycle, 
how much faster would the dotproduct run on this enhanced Arduino compared to the Arduino you 
used in lab and evaluated in Section 3?  
• This instruction will replace the call to __mulhisi3.  So, all the cycles that you calculate for 

making the call to __mulhisi3 and the cycles for the call will be replaced by a single cycle. 
• Hint: How many cycles does the current multiplication of 16-bit multiplication take? I.e. How 

long does __mulhisi take to run? Can you make the same chart as in Section 3, but with any 
instructions ran in __mulhisi removed? 

3. For what MAX_SAMPLE window sizes can you sample data and compute the Fourier Transform in 
real time? 

• For our 5000 samples per second rate, calculate how many clock cycles the Arduino could 
compute between samples.  Call this ctime. 

• From the lab, you know how many clock cycles it takes to compute the dotproduct for a 
particular values of MAX_SAMPLES.  Call this function dp_time(MAX_SAMPLES). 

• Further, you know it takes roughly 2×MAX_SAMPLES×dp_time(MAX_SAMPLES) to 
compute the Fourier Transform 

• When is 2×MAX_SAMPLES×dp_time(MAX_SAMPLES) < ctime×MAX_SAMPLES? 
• How does the maximum MAX_SAMPLES window size change if we sample at 1000 samples 

per second? 
 

 
HOW TO TURN IN THE LAB 
 

• Each student should assemble an individual writeup and upload as a PDF document to canvas, 
containing: 

o dotproduct and __mulhisi3 extracted code from prelab 
o Console message and explanation from Section 2, step 7 
o Arduino C code for time calculations 
o Table and plot of different FFT MAX_SAMPLES vs time taken for execution 
o Calculation of your Total Cycles with spreadsheet table and any assumptions made 
o Calculation of Execution time and inference from the comparison 
o Answers to any other highlighted questions in the lab 
o Answers to post-lab 
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Appendix: Arduino (AVR) Microcontroller Instructions 
 
I: 
To run code that is written in the Arduino IDE on the actual Arduino processor (ATmega328P), a series of 
steps need to be taken. These will all be covered in more detail in later classes, starting with CIS240.  
The processor cannot execute high level Arduino code that we write; what it executes is machine code, a 
series of bits that represent instructions telling the machine what to do. Each processor has a specific set of 
instructions that it “knows” what to do with; these are defined in the Instruction Set Architecture (ISA) of 
the device. In this lab we are using the ISA of the Arduino’s processor, but the concepts are extensible to 
any other device. 
 
In between the high level code and the machine code is assembly. In assembly each line is a direct 
translation of the machine code but is human readable. In a high level code it’s not immediately clear what 
instructions correspond to complex structures such as a for loop, or an if statement. However, in assembly, 
those logical structures are already broken down into single lines of code that each reference one 
instruction. Each instruction may either reference a memory address, i.e. to jump to a subroutine stored at 
the address, or load data from that address, or it may reference “registers”. Registers are special locations 
in memory that can be used to store values when we want to do mathematical operations on them. 
(Additionally, there are certain special registers that are used to store information such as “C” the carry 
flag and registers X Y and Z that are designed to store memory addresses. Similarly, there is a status 
register that contains bits for N, Z, and P. These bits refer to negative, zero, and positive, and are set by 
comparison instructions as well as implicitly set any time a value is stored in a register. They are used to 
make decisions in branch instructions. You can read more about these in the full datasheet linked below). 
To understand the assembly, we need to understand each instruction that the processor supports. Section II 
of this appendix details the instructions necessary for the lab; more details, as well as all the supported 
instructions can be found in the datasheet linked below. 
 
A typical line of assembly could look like this: 

71c: 0e 94 f2 04  call 0x9e4 ; 0x9e4 <__floatsisf> 
Here 71c is the memory location, represented in hexadecimal, where this instruction is stored in the 
Arduino. The 0e 94 f2 04 is the actual string of bits (machine code), represented in hex, that are the 
instruction. The call 0x9e4 is the human readable version of that instruction.  
In assembly anything after a ; is a comment, here the comment is letting us know that the memory location 
0x9e4 that the assembly command references is referring to the subroutine titled “<__floatsisf>”. 
 
II: 
Below are the instructions that you will find in this lab and the relevant information for each. For the 
purposes of the lab, while it will be helpful to have a basic understanding of what each instruction does 
when identifying what parts of the Arduino code they refer to, you do not need to fully understand how 
they all work together to implement Arduino code. This will be covered more in CIS240 and beyond. You 
should focus most on how long each instruction takes to execute. 
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Note that some instructions can take a variable number of cycles, indicated in the chart by a slash 
(depending on various things, such as if a condition is true or false when the instruction is executed). For 
the lab, this is what is meant by maximum and minimum number of cycles. For example, brne might take 
1 cycle if Z!=0 but 2 if Z=0. Note that whether the condition is true or not will affect what code runs, 
which further affects how long the entire program will take (i.e. in the high level code an if block might 
take a lot longer to run than the corresponding else block). For this lab we just want to look at the 
maximum and minimum number of cycles of each individual instruction, ignoring the effects taking a 
certain branch might have on the logical runtime of the code. 
 
 
Instruction Semantics Instruction Description Number of Cycles to execute 

add Rd, Rr  Add without carry: Rd = Rr + Rd 
and C is set to the carry-out bit 

1 

adc Rd, Rr Add with carrying: Rd = Rd + Rr 
+ C (which was previously set); 
C is set to the new carry-out bit 

1 

and Rd, Rr Logical And: Rd = Rd AND Rr 1 
brne OFFSET Branch Not Equal: If Z=0, Move 

the instruction execution (back of 
forward) by OFFSET.  

1/2 

brpl OFFSET Branch if Positive: If N=0, Move 
the instruction execution (back of 
forward) by OFFSET.  

1/2 

call SUBROUTINE Call subroutine: Move the 
instruction execution to 
instruction at SUBROUTINE, 
preparing to return when the 
subroutine is done 

4 

cpc Rd, Rr Compare with Carry: Compares 
Rd to Rr with subtraction, taking 
into account the previous carry 
bit, and sets the N and Z flags 
appropriately. Rd - Rr - C 

1 

cpi Rd, CONST Compare with Constant: 
Compares Rd to CONST with 
subtraction, setting N and Z 
flags. Rd - CONST 

1 

eor Rd, Rr Exclusive Or: Rd = Rd XOR Rr 1 
jmp LOCATION Jump: Move program execution 

to instruction at program 
memory LOCATION  

3 
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ld Rd, X/Y/Z Load from Memory: Load data 
into Rd from memory at location 
X/Y/Z (that was set earlier) 

1/2/3 

ldi Rd, VALUE Load Immediate: Load VALUE 
into Rd 

1 

mov Rd, Rr Copy Register: Copies Rd into 
Rr 

1 

movw Rd, Rr Copy Register Word: Copies a 
pair of registers (2 bytes = 1 
word) to another pair. Rd = Rr, 
Rd + 1 = Rr + 1. 

1 

mul Rd, Rr Multiply Unsigned: Multiplies 
unsigned numbers and places 
result in R0 and R1 (2 bytes). 
R1:R0 = Rd * Rr 

2 

ret Return from Subroutine: Move 
program execution to location 
previously stored with CALL.  

4/5 

sbc Rd, Rr Subtract with carrying: Rd = Rd -  
Rr -  C (which was previously 
set); C is set to the new carry-out 
bit 

1 

sbrs Rr, BIT Skip if Bit in Register Set: If bit 
number BIT in the value stored 
in Register Rr==1 then skip the 
next line of assembly code 

1/2/3 

std Y/Z + OFFSET, Rr Store to Memory with 
Displacement: Store the contents 
of Register Rr into data memory 
location Y/Z, with OFFSET. 

2 

sts LOCATION, Rr Store to Memory: Store the 
contents of Rd into data memory 
at LOCATION 

1/2 

sub Rd, Rr Subtract without carry: Rd = Rd - 
Rd and C is set to the carry-out 
bit 

1 

 
This appendix should suffice for our lab.  To see more details of the AVR Microcontroller and its 
instructions see http://ww1.microchip.com/downloads/en/devicedoc/atmel-0856-avr-instruction-set-
manual.pdf. 
 
 


