
ESE 150 – Lab 10: File Systems (or Organizing Data)

ESE150 – Lab 10 Page 1 of 11

LAB 10

Today’s Lab has the following objectives:

1. Learn how to organize data for ease and optimize retrieval
2. Design an Application-Specific File Systems

Background:

FILE SYSTEMS

Data can be stored compactly and inexpensively on bulk storage devices like magnetic and solid-state
“disk” drives. Between both the sheer capacity of data (Gigabytes to Terabytes) and the high ratio
between capacity and bandwidth, it is necessary to carefully organize our data so that we can find data
and access it quickly. This is the goal of a file system. The file system puts structure on top of the raw
capacity so that we can find where data is physically stored. File system hierarchy and directories allow
us to minimize the time required to navigate the data on the disk to find and retrieve our data.

ESE 150 – Lab 10: File Systems (or Organizing Data)

ESE150 – Lab 10 Page 2 of 11

Prelab:

Assume:

• a	64GB	solid-state	drive	with	a	read	bandwidth	of	100MB/s.		
• the	drive	primarily	holds	MP3	files	for	songs;	a	typical	song	is	3	minutes	long.		
• the	MP3	files	are	encoded	at	128Kbits/s.		

	
Questions:	

1. How	many	songs	can	the	drive	hold?		
2. How	many	hours	of	unique	playtime?		
3. How	long	does	it	take	to	read	through	the	entire	contents	of	the	solid-state	drive?		
4. Would	it	be	reasonable	to	perform	this	operation	to	list	the	contents	of	the	drive?		
5. About	how	many	bytes	would	it	take	to	store	the	title,	artist,	and	album	name	for	a	

song?	[State	necessary	assumptions.]	How	does	this	compare	to	the	length	of	the	
encoded	song?		

6. Assuming	you	stored	this	information	(title,	artist,	song)	along	with	an	8	Byte	
address	pointer	for	every	song	in	one	large	index	file,	how	much	data	would	this	
require?	How	long	would	it	take	to	read	this	data	from	the	disk?		

7. Assuming	the	consumer	keeps	the	device	for	3	years	and	listens	to	music	on	average	
2	hours	per	day	every	day	of	the	year,	how	many	times	(on	average)	is	each	song	
played?		

8. If	you	(the	engineer	designing	the	file	system	for	this	consumer	component)	have	a	
choice	of	performing:	(a)	more	work	when	the	song	is	initially	loaded	onto	the	
machine	to	accelerate	consumer	selection	or	(b)	minimal	work	on	load	but	more	
work	when	the	consumer	tries	to	find	the	song	to	play	it,	what	does	your	answer	to	
7	suggest	about	making	this	choice?		

	
Read	through	entire	lab.	

ESE 150 – Lab 10: File Systems (or Organizing Data)

ESE150 – Lab 10 Page 3 of 11

Lab Procedure:

Goal: Design and provide psuedocode implementation for a file system that allows a user to
store MP3 songs and quickly select them by album or artist.

We	would	like	to	be	able	to	browse	and	select	music	by:	

1. browse	artists,	then	browse	albums	by	that	artists,	then	by	title	within	the	album	
(for	the	selected	artists)		

2. browse	all	albums,	then	all	titles	on	the	selected	album	(for	multi-artist	albums,	the	
title	list	for	case	one	will	be	different	from	the	list	in	case	two)		
	

You	may	assume:	
•	album	names	are	unique.
•	songs	are	assigned	to	a	single	artist.	
	
Your	solution	should	be	economical	in	song	storage	space.		In	particular,	it	should	store	
each	song	only	once.		It	may	store	short	data	about	songs	(like	title,	artist,	album,	pointer	to	
song)	multiple	times.			Redundant	data	in	directory	nodes	is	acceptable.	

1. Show how your solution would represent the sample set of songs that follows

(This is a figure like the one on page 9. You may use a spreadsheet or a drawing program in any
software.)

2. Show the trace of operations performed when you add a song with a new album and artists.
E.g. show what happens when you add the song “Fight Song” by Rachel Platten on the album
Wildfire to set of songs represented in the previous question.

3. Document your design.

ESE 150 – Lab 10: File Systems (or Organizing Data)

ESE150 – Lab 10 Page 4 of 11

Single Hierarchy Design
• As	a	starter	and	example,	we	detail	an	implementation	that	only	handles	the	first	case	

above.	After	understanding	this	example,	you	will	need	to	modify	it	to	handle	both	
selection	by	artist	and	selection	by	album.

Overview
	

Our	solution	is	simply	to	represent	the	necessary	structure	directly	as	a	directory	
hierarchy.	At	the	top	level,	we	have	a	directory	of	artists.	In	each	artist	directory,	we	place	a	
directory	of	albums	by	that	artist.	In	each	of	these	album	directories,	we	finally	have	a	
directory	of	the	actual	songs	that	the	specified	artist	has	on	the	album.	When	a	new	song	is	
added,	we	create	directory	nodes	as	needed	for	artist	and	album,	then	link	the	song	from	
the	album	directory.	

Implementation

We need two operations: one to allow the user to navigate to a song, and one to allow the user to add a
new song.

• songBNode	←	Selector()	//Select	a	song	by	choosing	artist	then	album	and	then	title	

//Choose	artist	
artistList	←	GetKeyStringList(rootArtistBNode)	
selectedArtist	←	DisplayChooseString(artistList)	
artistBNode	←	GetValueForKey(rootArtistBNode,	selectedArtist)	
//Choose	album	for	chosen	artist	
albumList	←	GetKeyStringList(artistBNode)	
selectedAlbum	←	DisplayChooseString(albumList)		
albumBNode	←	GetValueForKey(artistBNode,	selectedAlbum)	
//Choose	song	for	chosen	album	
titleList	←	GetKeyStringList(albumBNode)	
selectedTitle	←	DisplayChooseString(titleList)		
songBNode	←	GetValueForKey(albumBNode,	selectedTitle)		

• AddSong(artist,	album,	title,	songBytes[])	
//Create	BNodes	for	artist,	album	and	title	
//if	necessary	and	store	song	in	title	BNode	
artistBNode	←	GetValueForKey(rootArtistBNode,	artist)//get	artist	BNode		
if	(NotPresent(artistBNode))//check	if	artistBNode	exists		
{	

//artistBNode	does	not	exist,	
//create	it	and	add	it	to	rootArtistBNode		
artistBNode	←	NewDirectoryBnode()		
InsertInOrder(rootArtistBNode,	artist,	artistBNode)		

ESE 150 – Lab 10: File Systems (or Organizing Data)

ESE150 – Lab 10 Page 5 of 11

	 }	

albumBNode	←	GetValueForKey(artistBNode,	album)	//get	album	BNode		
if	(NotPresent(albumBNode))//check	if	albumBNode	exists		
{	

//albumBNode	does	not	exist,	
//create	it	and	add	it	to	artistBNode		
albumBNode	←	NewDirectoryBnode()		
InsertInOrder(artistBNode,	album,	albumBNode)		

	 }	
titleBNode	←	GetValueForKey(albumBNode,	title)//get	title	BNode		
if	(NotPresent(titleBNode))//check	if	titleBNode	exists		
{	

//titleBNode	does	not	exist,	create	it		
titleBNode	←	NewDataBnode(songBytes.length,	mp3)	
InsertInOrder(albumBNode,	title,	titleBNode)		

	 }	
StoreIntoBNode(titleBNode,	songBytes)//store	songBytes	in	titleBNode	

ESE 150 – Lab 10: File Systems (or Organizing Data)

ESE150 – Lab 10 Page 6 of 11

Low Level Support Routines
We assume the following low-level support routines exist.

• stringList	←	GetKeyStringList(directoryBNode)	Given	a	directoryBNode,	returns	a	

list	of	items	in	the	directory.		
• string	←	DisplayChooseString(stringList)	Displays	a	stringList	and	returns	the	

chosen	item.		
• bNode	←	GetValueForKey(directoryBNode,	string)	Given	a	directoryBNode	and	a	

string	corresponding	to	an	item	in	the	directory,	returns	the	BNode	for	that	item	in	
that	directory.	If	the	string	does	not	exist,	returns	a	designated	bNode	token	
indicating	the	non-presence	of	the	string.		

• directoryBNode	←	NewDirectoryBnode()	Creates	a	new	BNode	of	type	directory	
and	returns	the	created	BNode.		

• InsertInOrder(directoryBNode,	string,	bNode)	Inserts	into	directoryBNode	the	item	
called	string	with	corresponding	bNode.	Maintains	alphabetical	order	within	
directoryBNode.		

• bNode	←	NewDataBnode(length,	type)	Creates	a	new	data	BNode	of	length	bytes	
and	of	type	type.		

• StoreIntoBNode(bNode,	bytes[])	Stores	the	array	bytes	bytes[]	representing	data	
into	bNode.		

	
Note:		
1.	You	may assume that functions InsertInOrder and StoreIntoBNode internally handle
creating or expanding trees of BNodes to accommodate the data.
2. You may also assume that rootAlbumBNode (like rootArtistBNode) exists.
3. Also, note that the left arrow ‘¬’ in the pseudocode means “assignment”, and is
equivalent to ‘=’ in most programming languages you’ve used.
4. Each song should only be stored once.
5. It’s okay to have duplicate directory nodes.

Now, modify and add to this example to write your own implementation. Talk with your TA
if you find there is a function you need that is missing.

ESE 150 – Lab 10: File Systems (or Organizing Data)

ESE150 – Lab 10 Page 7 of 11

Sample Set of Songs

Artist	 Album	 Title	
Queen	 Queen’s	Greatest	hits	 Bohemian	Rhapsody	
Queen	 Queen’s	Greatest	hits	 We	Will	Rock	You	
Queen	 Queen’s	Greatest	hits	 We	Are	The	Champions	
Queen	 Queen’s	Greatest	hits	 A	Kind	of	Magic	
The	Cyrkle	 Superhits	1966	 Red	Rubber	Ball	
The	Monkees	 Superhits	1966	 Last	Train	to	Clarksville	
Beach	Boys	 Superhits	1966	 Sloop	John	B	
Daydream	 Superhits	1966	 Lovin’	Spoonful	
The	Monkees	 The	Monkees	Greatest	hits	 Monkees	Theme	
The	Monkees	 The	Monkees	Greatest	hits	 I’m	A	Believer	
The	Monkees	 The	Monkees	Greatest	hits	 Daydream	Believer	
The	Monkees	 The	Monkees	Greatest	hits	 Pleasant	Valley	Sunday	
Beach	Boys	 Pet	Sounds	 Wouldn’t	It	Be	Nice	
Beach	Boys	 Pet	Sounds	 God	Only	Knows	
Beach	Boys	 Pet	Sounds	 I	Know	There’s	An	Answer	
Beach	Boys	 Pet	Sounds	 Pet	Sounds	

ESE 150 – Lab 10: File Systems (or Organizing Data)

ESE150 – Lab 10 Page 8 of 11

Interactions

Sample Selection by Artist

Sample Selection by Album

ESE 150 – Lab 10: File Systems (or Organizing Data)

ESE150 – Lab 10 Page 9 of 11

Single Hierarchy Design Representation for Sample Set of Songs

Root Type:Dir
Name
Beach Boys
Daydream
Queen
The Cyrkle
The Monkees

Node
2
3
4
5
6

 2 Type:Dir
Name
Pet Sounds
Superhits 1966

Node
7
8

 3 Type:Dir
Name
Superhits 1966

Node
9

 4 Type:Dir
Name
Queen's Greatest
Hits

Node
10

 5 Type:Dir
Name
Superhits 1966

Node
11

 6 Type:Dir
Name
Superhits 1966
The Monkees
Greatest Hits

Node
12
13

 7 Type:Dir
Name
God Only Knows
I Know There's
An Answer
Pet Sounds
Wouldn't It Be Nice

Node
14
15

16
17

 8 Type:Dir
Name
Sloop John B

Node
18

 9 Type:Dir
Name
Lovin' Spoonful

Node
19

 10 Type:Dir
Name
A Kind of Magic
Bohemian Rhapsody
We Are The Champions
We Will Rock You

Node
20
21
22
23

 11 Type:Dir
Name
Red Rubber Ball

Node
24

 12 Type:Dir
Name
Last Train to Clarksville

Node
25

 13 Type:Dir
Name
Daydream Believer
I'm A Believer
Monkees Theme
Pleasant Valley Sunday

Node
26
27
28
29

 14 Type:MP3
Data Blocks
30 31 ... 37

 20 Type:MP3
Data Blocks
83 84 ... 86

 26 Type:MP3
Data Blocks
118 119 ... 123

 15 Type:MP3
Data Blocks
38 39 ... 45

 21 Type:MP3
Data Blocks
87 88 ... 92

 27 Type:MP3
Data Blocks
124 125 ... 130

 16 Type:MP3
Data Blocks
46 47 ... 56

 22 Type:MP3
Data Blocks
93 94 ... 99

 28 Type:MP3
Data Blocks
131 132 ... 142

 17 Type:MP3
Data Blocks
57 58 ... 69

 23 Type:MP3
Data Blocks
100 101 ... 106

 29 Type:MP3
Data Blocks
143 144 ... 158

 18 Type:MP3
Data Blocks
70 71 ... 77

 24 Type:MP3
Data Blocks
107 108 ... 112

 19 Type:MP3
Data Blocks
78 79 ... 82

 25 Type:MP3
Data Blocks
113 114 ... 117

ESE 150 – Lab 10: File Systems (or Organizing Data)

ESE150 – Lab 10 Page 10 of 11

Full Interaction for Two View Case for Sample Set of Songs

Select by Artist

Select by Album

Q u e e n

The Cyrkle

The Monkees

Beach Boys

Daydream

Queen’s Greatest Hits

Superh i t s 1966

The Monkees Greatest Hits

Pet Sounds

Queen’s Greatest Hits

Superh i t s 1966

Superh i t s 1966

The Monkees Greatest Hits

Superh i t s 1966

Pet Sounds

Superh i t s 1966

Bohemian Rhapsody

We Will Rock You

We Are The Champions

A Kind of Magic

Sloop John B

Red Rubber Ball

Lovin’ Spoonful

Last Train to Clarksville

Monkees Theme

I’m A Believer

Daydream Believer

Pleasant Valley Sunday

Wouldn’t It Be Nice

God Only Knows

I Know There’s An A

Pet Sounds

Bohemian Rhapsody

We Will Rock You

We Are The Champions

A Kind of Magic

Red Rubber Ball

Last Train to Clarksville

Sloop John B

Lovin’ Spoonful

Monkees Theme

I’m A Believer

Daydream Believer

Pleasant Valley Sunday

Wouldn’t It Be Nice

God Only Knows

I Know There’s An A

Pet Sounds

ESE 150 – Lab 10: File Systems (or Organizing Data)

ESE150 – Lab 10 Page 11 of 11

Postlab
1. Assuming the minimum size of each BNode is 1KB, how much space does your solution add

per song (For a song, make the same assumption as in prelab)?
a. Absolute space in Bytes
b. Relative space as a percentage to the space required for the song

2. Identify three other ways you might like to organize your music (beyond the by-artist and
by-album that you designed for in this lab). For each:

a. Describe the classification (one sentence)
b. Describe how to extend your solution to handle this additional classification in one to

two sentences.
3. The Internet is estimated to contain over a Zettabyte (1021 Bytes or 270 Bytes) and we are

adding 1018 Bytes per day (it’s really an exponentially growing number, but even a constant
rate is enough to illustrate the challenge). Extend the reasoning from the prelab to outline
the importance of indexing and organization to make it possible to find information on the
Internet. Assume your computer has a 100 MB/s connection to the Internet.

HOW TO TURN IN THE LAB

• Submit a PDF document to the designated canvas assignment containing:

o Answers to prelab
o Your design solution including

§ Overview description of the design
§ Implementation in psuedocode
§ Diagrams to show how your solution implements the sample set of songs

o Answers to postlab

