

Lecture \#1 - Course Introduction / Intro to Digital Audio
ESE 150 -
DIGITAL AUDIO BASICS

LECTURE TOPICS
History \& Motivation
Computing and Digital Audio
Overview of Class Schedule
Big picture of our class goals
Course Introduction / Goals of Class
Syllabus; Laboratory; Grading

Course Content Overview

Week by week breakdown of class itself
Summary

CHANING WORLD

Moore's Law: Every 18 months, size of transistor will be halved Who cares?

In same area, can fit twice as many transistors, twice the computing power!
Also, generally: if you make a transistor smaller, it gets a bit faster

COMNECTING THE WORLD

By Jeff Ogden (W163) and Jim Scarborough (Ke4roh) - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=18972898

IN YOUR LIFETIME...

2001: iPod, Wikipedia launched
2003: iTunes launched, Skype released
2004: Facebook launched
2005: YouTube launched
2006: Twitter launched
2008: Bitcoin
2010: Instagram
2011: Siri, Snapchat, Google driverless cars, Uber
2012: Makerbot Replicator
2013: Google Glass
2015: iWatch

COOL STUFF OF TODAY...

Today's "must have" technology is:
Cell phones
MP3 players (Digital Audio Players) Internet enabled
Digital cameras and video recorders (part of phones!)
Realistic Video Games
Integrated (e.g. iPhone, iPad)
DVRs (e.g. TiVo)
E-book readers (e.g. Kindle) What else
3D printers (e.g. Makerbot) add to this list?
Circuit Scribe - draw actual circuits, electric ink! Replicator.
Augmented Reality (e.g. Jedi Challenge, Pokemon-Go) Holodeck...

WHAT DO THESE THINGS INVOLVE?

Computation

Communications
Hardware
Substantial software
\Rightarrow Products of Computer Engineers
Medical Devices
Ultrasound
MRI
DNA sequencing
Pacemakers
WHAT MAKES US SAFER, LIVE LONGER?
Transportation
Anti-lock brakes
Traction control
Blind-side assist
Watch over
Security cameras
Baby monitors

Changing World: EAŞY Sharing

Easy Instant sharing and storage
Photos, videos, writing
Web, Facebook, Youtube, Blogs
Backed up, Cloud
Accessible anywhere in the world
Indexed and searchable
Can carry it with you

Changing Wortd: Instant Gratification

Search engines

Instant access to knowledge
iTunes
Instant access to music/casts/apps/video too
Streaming video
Instant access to video/news/visual information Internet services/Netflix/On-Demand/etc.
Amazon.com
Instant access to nearly any product, ~drone delivery!

CHANGING WORLD: NEW WEALTH, NEW PLAYERS
Microsoft founded 1975
World's richest man...for a while
Apple founded 1976
Highest valued company
Oracle 1977
CISCO 1984
NVIDIA 1993
Amazon.com 1994
New world's richest man..
E-Bay 1995
Google, Netflix 1998
Facebook 2004
Twitter 2006
Bitcoin 2008

Convergence

Big Ideas and Advanced Technology
Digitize Everything
Cheap Digital Processing
Cheap Storage
Cheap Digital Bandwidth
Driven by Moore's Law
Store and compute more bits per \$\$

Enabled by Visionary Engineers

Hard work, inspiration, and competition
...would not have just happened
Certain applications/products tie many things together No one realized facebook/music would be "killer app" for smartphone revolution

Most inconceivable just prior

Compare how archaic the "future" looks in most movies just 20 years old
What's next?
How can we harness to make the world better?

CLASS STORY: ONE SLIDE

Sound can be converted to/from bits
and compressed, without loss of information
More information can be discarded without humans noticing \rightarrow fewer bits
Process this information with inexpensive machines Store it for retrieval
Send it between machines
Even if not directly connected

ABOUT THE COURSE

ESE 150: Digital Audio Basics

But really: "Introduction to Computer Engineering"

Our Goals:

Deliver 13 lectures on 13 topics in Comp. Eng. Each lecture full course on later; 13 different courses!
Expose you to the big topics in Comp. Eng.
You won't like them all. . .but you will probably love 1 or 2 !
Help you figure out which path in Comp. Eng. to take
Use digital audio as common theme between lectures
This information goes way beyond digital audio
Tie theory to practice ("feel-the-bits") through a weekly lab To see concepts discussed in lecture in a lab environment
Labs are not perfect, connections sometimes not obvious at first

The Big Picture...

Computer Engineering

very large field of engineering
Seeing the top 13 ideas...through the guise of digital audio helps you see the big picture of comp. eng.
We want you to see the "big picture" of comp eng. before taking a lot of unnecessary courses

Miss one lecture...miss a lot!
Common complaint...I don't need lecture to succeed in lab
You might be right! ... but it should make it more meaningful.
Help us help you...

* If you don't see how lecture/lab fit together, tell us!! Help us improve course.

Mechanics of the Class

Wednesday: Lecture

Introduce concepts (theory)
Help paint the big picture
Monday: Lab
Put theory into practice
Apply 1 big concept in real world
Many concepts may appear in lecture..
One will be put to use in guise of digital audio in the lab
Work in teams of 2
Individual lab report write-ups
Friday: Lab Report due
(except formal one - Sunday)

LECTURE TIMELINE

4:25pm - target to setup, have preclass available Start working on preclass as you arrive
4:35pm - start lecture
5:55pm - end lecture
Need to leave earlier, go ahead.

GRADING

10\% - Class Participation and Quizzes (if necessary) Based on assigned reading material
50\% - Weekly Lab Report Writeup
Work in groups of 2 (we assign and mix up week-to-week) Some labs may have "prelab" work to do - counted as part of lab writeup
Drop lowest score on attempted labs
20\% - Formal Lab Report
5\% - Midterm Exam
Warmup for final
15\% - Final Exam
Based on reading material, lecture material, lab work
Read web page for policies Not hard, but must show up, engage, do the work

CLASS GOALS

Context and motivation for CMPE major
Appreciate how CMPE, EE, CIS, SSE:
Work together
How they impact today's world
Start thinking like an engineer!
...and gives you some of the questions will ask in lecture Won't be available later, online \rightarrow get them in lecture
"Warm" Calls
Promote interaction/engagement
Feedback sheets
Turn in at end of lecture
Help me tune lecture for class

Outcomes

Able to conduct experiments
Psychoacoustic, network, hardware
Able to optimize information encoding Able to design file system for multiple views Able to quantify quality vs. size tradeoffs in audio Able to use oscilloscope, matlab, arduino Able to write formal lab report Understand role of Intellectual Property Appreciate User Interface design Understand technology enables new capabilities

HOW RQ PEOPLE COME OUT?

Create Histogram

How I came out...
Count numbers by students:
Bin: 9+, 8-4, 3-1, 0, 1-3, 4-8, 9+
Histograms:

Active/Reflective

Sensing/Intuitive
Visual/Verbal
Sequential/Global

DIMENSIONS

Active (ACT) vs. Reflective (REF)

Doing vs. thinking
Sensing (SEN) vs. Intuitive (INT)
Facts and methods vs. abstractions and innovation
Visual (VIS) vs. Verbal (VRB)
Pictures, diagrams vs. descriptions
Sequential (SEQ) vs. Global (GLO)
Linear steps vs. context and connections
See reading link on syllabus.

WEEK 1: INTRODUCTION TO SOUND WAYES
Cycle $=1$ iteration of sine wave Hertz $(\mathrm{Hz})=1$ cycle per second $1 \mathrm{kHz}=1000$ cycles $/ \mathrm{s}$

Source: http://www.mediacollege.com/audio/01/sound-waves.html

WeEk 1: Pressure to Xoltage
Microphones convert pressure to voltage (speakers/headphones voltage to pressure)
Physical position to voltage
$\Delta \mathrm{d} \rightarrow \Delta \mathrm{C} \rightarrow \Delta \mathrm{V}$
Reason as parallel place capacitor ESE 112 or PHYS 151

$$
C=\frac{\varepsilon A}{d}
$$

$$
Q=C V \quad V=\frac{Q}{C}
$$

BEFORE NEXT SLIDE...MINI-QUIZ:

* What is a bit (a Binary Digit)?

Smallest piece of information we can store (on/off)
How many bits in a byte?

$$
+8
$$

Bytes in a Kilobyte?
$2^{10} \times 1$ byte $=1024$ bytes
Bytes in a Megabyte?
$2^{10} \times 1 \mathrm{~KB}=1,048,576$ bytes
Bytes in a Gigabyte?

$$
2^{10} \times 1 \mathrm{MB}=1,073,741,824 \text { bytes }
$$

\times How many bits to store a typical song?

WEEK 3: LOSSLESS COMPRESSION

Statistics of data allow compression
If all symbols (characters, voltages) aren't equally likely, Can assign shorter bit sequences to most common cases and reduce bits required to store or transmit!
Famous Example of statistical storage: Morse Code:
THE = - $=6$ symbols (not 18 as you might expect)

WEEK 5: PSYCHOACOUSTICS

Human input apparatus is limited If we only care about human perception that reduces the information needed (reduces samples/sec) Limited maximum frequency

WEEK 7: HARDWARE

CPUs: We'll look at their operation and architecture

How fast does your laptop or cell phone run?

Modern chips run 100 MHz to $4 \mathbf{G H z}$
\rightarrow only need one multiplier, adder
Reuse hardware it in time

Week 9: Operating System

This hardware can be virtualized and shared among tasks

How does OS control hardware?
Do we need giant OS or small portion for mp3?

THIS COURSE

It is a work in progress:
Attempts to explain a great deal of Comp Eng Without going to far in depth
Lecture/Lab
Intent is to tie them together well
Inevitably, the tie won't always be obvious
Help us, help you (and future students):
The more feedback you provide, the better we can make this course
If a tie isn't obvious, let us help make the connection stronger
We want you to love Comp Engineering as much as we do ©
One form: daily feedback sheets

ChANGING WORLD

Automated computation changed world

Faster than we imagined
World being digitized and refitted for computerized control and mediation

People-to-people, people-to-machines Infrastructure from bricks/concrete/steel to networking/computers/software
Enabling new engineering
Computerization at center
Exciting and dangerous
Computer Engineering at center

Parting Thought

From $1^{\text {st }}$ computer to PCs in 30 years Eniac $1946 \rightarrow$ Apple 1976
From first PCs to iPhone next 30 years
Apple 1976 \rightarrow iPhone 2007
What will next 30 years hold?
Beginning of your career
What will you imagine, create, enable?

