

LECTURE TOPICS

Where are we on course map?
What we did in lab last week

$$
+ \text { How it relates to this week }
$$

Lossless Compression
What is it, examples, classifications
Probability-based lossless compression
Huffman Encoding
Entropy
Next Lab
References

Prectass

PRECLASS

Tell me and I forget, teach me and I may remember, involve me and I learn
-- Benjamin Franklin
73 symbols (fancy, more general term for letters)
19 unique (ignoring case)
(A, B, C, D, E, F, G, H, I, L, M, N, O, R, T, V, Y, space, comma)
How many bits to represent each symbol?
How many bits to encode quote?

Preclass

Tell me and I forget, teach me and I may remember, involve me and I learn
-- Benjamin Franklin
73 symbols
$\times 19$ unique (ignoring case)

- Conclude

Symbols do not occur equally
Symbol occurrence is not uniformly random

Preclass

Tell me and I forget, teach me and I may remember, involve me and I learn
-- Benjamin Franklin

73 symbols

19 unique (ignoring case)
If symbols occurrence equally likely, how many occurrences of each symbol should we expect in quote?
How many e's are there in the quote?

Prectass
Tell me and I forget, teach me and I may remember, involve me and I learn
-- Benjamin Franklin
Using fixed encoding (question 1)
How many bits to encode first 10 symbols?
How many bits using encoding given?

Preclass
Tell me and I forget, teach me and I may remember, involve me and I learn
-- Benjamin Franklin

* Using fixed encoding (question 1)

How many bits to encode first 24 symbols?
How many bits using encoding given?

Preclass

Tell me and I forget, teach me and I may remember, involve me and I learn
-- Benjamin Franklin
Using fixed encoding (question 1)
How many bits to encode al 73 symbols?
How many bits using encoding given?

CONCLUDE

Can encode with (on average) fewer bits than $\log _{2}$ (unique-symbols)

What is compression?
Encoding information using fewer bits than the original representation
Why do we need compression?
Most digital data is not sampled/quantized/represented in the most compact form

It takes up more space on a hard drive/memory
It takes longer to transmit over a network
Why? Because data is represented in so that it is easiest to use Two broad categories of compression algorithms:

Lossless - when data is un-compressed, data is its original form No data is lost or distorted
Lossy - when data is un-compressed, data is in approximate form Some of the original data is lost

Representation of Rata				
Lotor	$\substack{\text { Nemotic } \\ \text { Enocoing }}$	Letar		
	$\stackrel{0}{1}$	N	${ }_{14}^{13}$	
	${ }_{3}^{2}$	P	${ }_{15}^{15}$	How to encode alphabet?
E	${ }_{5}^{4}$	${ }^{\text {R }}$	${ }_{17}$	
${ }_{6}$	${ }_{6}^{6}$		${ }_{18}^{18}$	$A \rightarrow 0$ and $Z \rightarrow 25$
+	\%	$\stackrel{\square}{v}$	${ }^{20}$	
	9	${ }^{\text {w }}$	22	
	${ }_{11}^{10}$	$\stackrel{\times}{\gamma}$	${ }_{24}^{23}$	
	12	z	${ }^{25}$	

HOW MANY BITS TO REPRESENT ALL LETTERS?				
Letter	Binary Encoding	Letter	Binary Encoding	
A	00000	N	01101	Including upper and lower case?
B	00001	0	01110	
C	00010	P	01111	
D	00011	Q	10000	
E	00100	R	10001	
F	00101	S	10010	
G	00110	T	10011	
H	00111	U	10100	
1	01000	V	10101	
J	01001	W	10110	
K	01010	X	10111	
L	01011	Y	11000	
M	01100	Z	11001	

EXAMPLE OF LOSSLEESS COMPRESSSION

A simple form of compression would be the following:
ORIGINAL TEXT (13-characters): I Love ESE150
ASCII Encoding (13-bytes = 104 bits)
0100100100100000010011000110111101110110 0110010100100000010001010101001101000101 001100100011010100110000

Convenient to write programs that read/write files 1-byte at a time But, since ASCII only needs 7 -bits (not 8)

We could write a compression program that strips the leading 0
Output of Compression Program (91 bits ~ 11.375 bytes):
100100101000001001100110111111101101100101 010000010001011010011100010101100100110101 0110000

Compression ratio: 104 bits in / 91 bits out $=1.14$: Lossless because we can easily restore exact oricina

COMPRESSION PROCESS

-Why not compress all the time?

- Inconvenient; expensive in terms of microprocessor cycles
- Leads to tradeoff: compute vs. storage

EXAMPLE OF LOSSY COMPRESSION

Sample Rate: 1000 samples/sec, Resolution: 3-bits per sample
Our Sampled Signal: $\{0,2.2 \mathrm{~V}, 3 \mathrm{~V}, 2.2 \mathrm{~V}, 0,-2.2 \mathrm{~V},-3,-2.2 \mathrm{~V}, 0\}$
Our Quantized Signal: $\{0,2 \mathrm{~V}, 3,2 \mathrm{~V}, 0,-2,-3,-2,0\}$
Our 3-bit Digitized Data: $\{011,101,110,101,011,001,000,001,011\}$
space required to store/transmit: $\mathbf{2 7}$ bits

ADC related compression algorithm:
CS\&Q (Coarser Sampling AND/OR Quantization)
Either reduce number of bits per sample AND/OR discard a sample completely Example with our digitized data
Our 3-bit Digitized Data: \{011, 101, 110, 101, 011, 001, 000, 001, 011\}
If we drop the sampling rate by a factor of 2 , how effect number of bits needed?
Lossy because we cannot restore exact original

INTERLUXE (TIME PERMITTING)

SNL - 5 minute University

Father Guido Sarducci
https://www.youtube.com/watch?v=k08x8eoU3L4

What form of compression here?

For Computer Engineering?

Make the common case fast

Make the frequent case small

STATISTICS

How often does each character occur?

Capital letters versus non-capitals?
How many e's in a preclass quote?
How many z's?
How many q's?

English Letter Frequency

http://en.wikipedia.org/wiki/File:English-slf.png

HUFFMAN ENCODING
Developed in 1950's (D.A. Huffman)
Takes advantage of frequency of stream of bits occurrence in data

Can be done for ASCII (8-bits per character)
Characters do not occur with equal frequency.
How can we exploit statistics (frequency) to pick character encodings?

But can also be used for anything with symbols occurring frequently E.g., Music (drum beats...frequently occurring data)

Example of variable length compression algorithm Takes in fixed size group - spits out variable size replacement

Hufgman Encoding - The Basics

Example: more than 96% of file consists of 31 characters
Idea: Assign frequently used characters fewer bits
31 common characters get 5 b codes 00000--11110
Rest get 13b: 11111+original 8b code
How many bits do we need on average per original byte?

CALCULATION

Bits = \#5b-characters * 5 + \#13b-character * 13
Bits=\#bytes*0.96*5 + \#bytes*0.04*13
Bits/original-byte $=0.96 * 5+0.04 * 13$
Bits/original-byte $=5.32$

HuFEMAN ENcobing - MORE ADVANCED

Huffman goes further: Assign MOST used characters least \# of bits: Most frequent: $A=1$, least frequent: $G=00011$, etc.
Example: original data stream:

Preclass Encoding

	symbol	encode	occur			
(space)	00	15	L	0100		
A	1110		M	1111		
B	100100		N	1010		
C	100101		O	10011		
D	10110		R	0101		
E	110	11	T	10111		
F	011010		V	10000		
G	011011			011001		
H	011000			10001		
I	0111					
					38	

PrEctass Encoding

symbol	encode	oceur	symbol	encode	occur
(space)	00	15	L	0100	4
A	1110	6	M	1111	6
B	100100		N	1010	5
C	100101		0	10011	2
D	10110	3	R	0101	4
E	110	11	T	10111	3
F	011010		V	10000	2
G	011011		Y	011001	
H	011000		,	10001	2
1	0111	4			

PRECLASS ENCODING					
symbol	encode	occur	symbol	encode	occur
(space)	00	15	L	0100	4
A	1110	6	M	1111	6
B	100100	1	N	1010	5
C	100101	1	0	10011	2
D	10110	3	R	0101	4
E	110	11	T	10111	3
F	011010	1	V	10000	2
G	011011	1	Y	011001	1
H	011000	1	,	10001	2
1	0111	4			
See how variable length encoding saved bits? Questions?					

MANY TYPES OF FREQUENCY

Previous example:

Simply looked at letters in isolation, determined frequency of occurrence

More advanced models:

Predecessor context: What's probability of a symbol occurring, given: PREVIOUS letter.

Ex: What's most likely character to follow a T?

COMPRESSIBILITY

Compressibility depends on non-randomness
(uniformity)
Structure
Non-uniformity
If every character occurred with same freq:
There's no common case
To which character do we assign the shortest encoding? No clear winner
For everything we give a short encoding, Something else gets a longer encoding

* The less uniformly random data is...
the more opportunity for compression

HOW LOW CAN WE GO WITH COMPRESSION?

[^0]
SHANNON'S ENTROPY

What is entropy?

Chaos/Disorganization/Randomness/Uncertainty
Shannon's Famous Entropy Formula:

Negative Sum Of:
(measured in bits)
$\log _{2}$ of (probability of each outcome

ESTIMATING ENTROPY OF ENGLISH LANGUAGE

27 Characters (26 letters + space)
If we assume all characters are equally probable:

$$
p(\text { each character })=\frac{1}{27}
$$

Information Entropy per character:

$$
\begin{gathered}
H=-\sum p(x) \log p(x) \\
H=-27\left(\frac{1}{27}\right) \log \left(\frac{1}{27}\right)=-\log \left(\frac{1}{27}\right)=+4.75 \text { bits }
\end{gathered}
$$

Same thing we got when we said we needed $\log _{2}$ (unique_things) bits

SHANNON ENTROPY

Essentially says

Should be able to encode with $\log (1 / p)$ bits

$$
\begin{aligned}
& \text { Average Bits }=\sum_{i} p_{i} \times \operatorname{bits}(i) \\
& \qquad H=-\sum_{i} p_{i} \times \log _{2}\left(p_{i}\right)
\end{aligned}
$$

Where did we calculate Average Bits earlier in lecture?

SHANNON ENTROPY PRECLASS QUOTE						
$H=-\sum p_{i} \times \log _{2}\left(p_{i}\right)$						
(space)	2	15	0.21	2.28	0.47	0.41
A	4	6	0.08	3.60	0.30	0.33
в	6	1	0.01	6.19	0.08	0.08
c	6	1	0.01	6.19	0.08	0.08
-	5	3	0.04	4.60	0.19	0.21
E	3	11	0.15	2.73	0.41	0.45
	5	2	0.03	5.19	0.14	0.14
					3.74	3.77

SHANNON ENTROPY ENGLISH LETTERS

	$H=-\sum_{i} p_{i} \times \log _{2}\left(p_{i}\right)$		
letter	8.17%	3.61	0.30
a	1.49%	6.07	0.09
b	2.78%	5.17	0.14
c	4.25%	4.56	0.19
d	12.70%	2.98	0.38
e	2.23%	5.49	0.12
f			
	0.07%	10.40	0.01
z	100.00%		4.18
			54

SUMMING IT UP: SHANNON \& COMPRESSION

Shannon's Entropy represents a lower limit for lossless data compression

It tells us the minimum amount of bits that can be used to encode a message without loss (according to a particular model)
Shannon's Source Coding Theorem:
A lossless data compression algorithm cannot compress messages to have (on average) more than 1 bit of Shannon's Entropy per bit of encoded message

TO CONSIDER

Assumed know statistics

What if you don't?
What if it changes?
How could we adapt the code to changing statics?

THIS WEEK IN LAB

Implement Compression!

Implement Huffman Compression

Remember:
Lab 2 report is due on canvas on Friday.

Office Hours:
Moved T2:30 \rightarrow R4:30
Moved R2:30 \rightarrow R7:00

BIG IDEAS

Lossless Compression

Exploit non-uniform statistics of data
Given short encoding to most common items

Common Case

Make the common case inexpensive
Shannon's Entropy
Gives us a formal tool to define lower bound for compressibility of data

LEARN MORE

ESE 301- Probability

Central to understanding probabilities
What cases are common and how common they are
ESE 674 - Information Theory
Most all computer engineering courses
Deal with common-case optimizations CIS240, CIS371, CIS380, ESE407, ESE532....

[^0]: What is the least \# of bits required to encode information?

