ESE 150 —
DIGITAL AuDIO BAsics

Lecture #4 — Converting from time to frequency domain

Based on slides © 2009--2019 Koditschek & DeHon
Additional Material © 2014--2017 Farmer
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REPRESENTATION

Note shape?

-» £

TEASER
Play
O
@
4 quarter notes 1 whole note
Cheat: A5, B5, G5, G4, D5
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How does musical staff represent sound?
What does vertical position represent?

&
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TEASER

Play this on piano:

-» £
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INFORMATION

1s / quarter note = 8s of sound

How many bits to represent 8s of sound with
16b samples and 44KHz sampling?

44K Hz x 16b/sample x 8s = 5632K =5Mbits

N
R

ESE 150 — Spring 2019

FREQUENCY REPRESENTATION

There are other ways to represent
Frequency representation particularly efficient

-» £
% °
¢

880 988 784 392 587

Frequencies in Hertz
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T WA mwnnm’
FREQUENCY REPRESENTATION —_

How much information is this musical staff
communicating?
How many keys on piano? -> bits/note

{4 P

Hamburg Steinway D-274 Piano photo by Karl Kunde

L)
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FREQUENCY REPRESENTATION

Approximate [

oy et How much information is this musical staff
communicating?

How many keys on piano? - bits/note

Let’s say 8b duration

How many bits for 5 notes?
(7b/note+8b/duration) x 5 note = 75 bits?

> p
.

)
y

sl

Larry Solomn: http://solomonsmusic.net/insrange.htm
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LAB 2 POSTLAB CONCLUDE

Can represent common sounds much more
compactly in frequency domain than in time-
sample domain

Frequency domain ~ 75b

Time-sample domain ~ 5Mb

You reproduced 800 samples of a 300Hz sine
wave at 1000Hz with 8b precision

6400b
What did you need to specify to do that?

How may bits to represent that?
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LECTURE TOPICS

Teaser: frequency representation
Where are we on course map?
What we did in lab last week
How it relates to this week
The Fourier Series — can represent any signal

The Discrete Fourier Transform (DFT) — can translate
Change of basis

Next Lab
References
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COURSE MAP 7,8,9 10101001101

MIC CPU
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COURSE MAP — WEEK 5

mic
\

> aDp > 10101001101

domain
conversion

\sample freq
N (2 4

< D/A <— 10101001101

eaker IP3 Player / iPhone / Droid
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Background

WHAT IS THE FREQUENCY DOMAIN?
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WHAT WE DID IN LAB...

\
. L )
Analof Digitgl 2
input ADC Putput T 'O’é%

Week 1: Converted Sound to analog voltage signal
a “pressure wave” that changes air molecules w/ respect to tim
a “voltage wave” that changes amplitude w/ respect to time
Week 2: Sampled voltage, then quantized it to digdital sig.
Sample: Break up independent variable, take discrete ‘samples’
Quantize: Break up dependent variable into n-levels (neeg¢f 2" bits to digitize)
Week 3: Compress digital signal
Use even less bits without using sound quality!
Week 4 (upcoming): Before we compress...
Put our ‘digital’ data into another form...BEFORE we compress...less stuff to compress!

MusiCcAL REPRESENTATION
- 2

6 ——

T | T
&l‘nlll]l[ll]l.‘llllll

| | 1 1 1| | 1 I\
p

With this compact notation
Could communicate a sound to pianist

Much more compact than 44KHz time-sample
amplitudes (fewer bits to represent)

Represent frequencies
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TIME-DOMAIN & FREQUENCY-DOMAIN

As an example...let’s say we have a pure tone
If period: T = 1/2 and Amplitude = 3 Volts
s(t) = AsinQ2nft) = Asin(2n2t)

3 35

e ——

Vots

3

: / /I e

3
0 o1 02 03 04 05 06 07 08 08 1
time (s)

Time domain representation Frequency domain representation
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FREQUENCY-DOMAIN

Of course, not all signals are this simple

For example: s(t) =sin(2x2mxt) + ;.sin(2n><t)
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05 1.0 15 -15

T T T
0 ™2 & 3m2 2¢ 5%2 3 7mi2

FREQUENCY-DOMAIN
- How about the time-domain?
2 Plot sin(2x2mxt)

o S Plot Isin(2mxt)

s Sum: sin(2x2mxt) + ;—sin(ZnXt)

Notice how it was easier to
plot the frequency domain
representation

05 1.0 15

FmpITude

-0.5
§
amplitude
I

-0.5

T T T T T T T T T
[ n/2 x 3n/2 2n 5m/2 3n Tmi2 [ n/2 x 3n/2 2 5mi2 3n Tn/2
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FREQUENCY-DOMAIN

So far...
we have seen how a signal written as:
a sum of sines of different frequencies
can have a frequency domain representation

Each sine component...
is more or less important depending on its coefficient
Example: s(t) = 1 sin(2x2mxt) + ;-.sin(Zﬂ:Xt)
Can any arbitrary signal be represented as a
sum of sines?
No. But the idea has potential, let’s explore it!

FREQUENCY-DOMAIN

Another example

i : N
1 ‘ 5 UATRIAY
O } [ V

time (s)

The time domain plot on the right is really the sum of 5 sinusoids,
where 5 Hz is the strongest component of the signal

(new background setup)

VECTOR BACKGROUND
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VECTOR SPACE

We’re familiar with multi-dimensional spaces
and vector representation
E.g. Cartesian Coordinates in 2 Space
2 dimensions X, Y
Represent points as vector with 2 elements (x,y)

Preclass 4a
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VECTOR SPACE

We’re familiar with multi-dimensional spaces
and vector representation

E.g. Cartesian Coordinates in 2 Space

2 dimensions X, Y

Represent points as vector with 2 elements (x,y)
Can easily extend to 3 Space

(x.y,2)
Harder to visualize, but could
extend to any number of
dimensions

(d1,d2,d3,d4,d5,....)
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ORTHOGONAL BASsIs

We can describe any point in the space by a
linear combination of orthogonal basis
elements
E.g. Cartesian Coordinates in 2 Space
x - [1,0]
y- 01
Any point:
a*x +b*y =[a,b]
Orthogonal — no linear scaling of
one gives the other
Dot products are zero

Combine by linear superposition

ESE 150 — Spring 2019

DIFFERENT REPRESENTATIONS

We can also represent points in 2-space in
polar coordinates

A different orthogonal basis
(magnitude, ©)

LSS
ZS XS
.. ‘\‘“h"" “ 75
270 ..g=$\\‘r[/é==
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CAN CHANGE REPRESENTATIONS

Both Cartesian and Polar Coordinates can
describe points in the same space.
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COoMPLEX NUMBERS

Complex Numbers are an example of this
Real dimension
Imaginary dimension
Cartesian version: a+bj 0
Polar (Magnitude, angle) version: MXel

Euler’s Formula: €9 =cos 8 + i sin




(revised)
The frequency domain &

THE FOURIER SERIES
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FOURIER SERIES — MORE FORMALLY

The Fourier Theorem states that any periodic function f(t)
of period L can be cast in the form:

- nmt nmt
f(t) =ao+ Z (an cos ——+ b,, sin ﬁ
n=1

The constants: ay, a, , and b,, are called the Fourier coefficients of f(t)

FOURIER SERIES — SAWTOOTH WAVE
A A A

Il,‘,'-'-'.

(falstad.com/fourie]
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HISTORY...

Fourier series:
Any periodic signal can
be represented as a sum
of simple periodic
functions: sin and cos

sin(nt) and cos(nt)
wheren=1,2,3, ...

These are called the
harmonics of the signal

|
FOURIER SERIES — WHY DOES IT WORK?

1

THz — /\ 3Hz ——

1
0 01 02 03 04 05 06 07 08 08 1

1 ,\ oMy — time (5
The cos(nx) and sin(nx) functions
form an grthogonal basis:
allow us to represent any periodic
signal by taking a I jnati
of the basis functions without
interfering with one another
AKA: superposition works!

K
0 01 02 03 04 05 06 07 08 03 1

34

|
FOURIER SERIES — SQUARE WAVE

[ | [ | [

J . | N |

.T,T.?.!., .

(falstad.com/fourie]

-
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FOQURIER SERIES (REVIEW OF KEY POINTS)

The idea of the series:
Any PERIODIC wave can be represented as simple sum
of sine waves

2 Caveats:

Linearity:
The series only holds while the system it is describing is linear
because it relies on the superposition principle

-aka — adding up all the sine waves is superposition in action
Periodicity:
The series only holds if the waves it is describing are periodic

Non-periodic waves are dealt with by the Fourier Transform
We will examine that in the 2" half of lecture
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INTERLUDE

Close Encounters Mothership
https://www.youtube.com/watch?v=S4PY16TzqY
k
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NYQuisT

Remember we said we needed to sample at
twice the maximum frequency

Now see all signals can be represented as a linear sum
of frequencies

...and the frequency components are orthogonal

Can be extracted and treated independently

WHAT Now?

In the first half of the lecture we introduced:
The idea of frequency domain
The Fourier Series

In the second half of the lecture:
Fourier Transform
See how to perform this time-frequency translation
Examples
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(new background setup)

VECTOR BACKGROUND
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CHANGE OF BASES

There are more than one set of basis vectors
that span a space

For example, might rotate 90 degrees in Cartesian

coordinates b1

1 -1

1 1
bl =7 7 b2 = [ 73
Note dotproduct(b1,b2)=0

Represent points as linear
combination: a*b1+c*b2




CHANGE OF BASES

Can change basis by performing dot product
Represent points as linear combination: a*b1+c*b2
a=dotproduct([x,y],b1); c=dotproduct([x,y],b2)

b1

2/13/19

(heavily revised)

THE FOURIER TRANSFORM
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PRECLASS 5
Compute Dot Products — what did we get?

time 00 01 0.2 03 0.4 05 06 07 0.8 0.9 1.0
Sample 0 0.95 0.59 -0.59  -0.95 0 095 0.59 -0.59 -0.95 0
B1 000 059 095 095 059  0.00 059  -0.95 -0.95 -0.59  0.00

B2 0.00 095 059 059  -0.95 000 095 059 059  -0.95  0.00

B3 0.00 095 059  -0.59 095  0.00 095 059 059 0.95  0.00

B4 0.00 059 0.95  0.95 059 000  0.59 0.95  0.95 0.59  0.00

5 0.00 000 000 000 000 000 000 000 000 000  0.00
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2mk Xi

OBSERVE
When we compute the dot-product with discrete
frequency samples, only non-zero was the
frequency in the signal.

Sampleli] = sin(

time 00 01 0.2 03 0.4 05 06 07 0.8 0.9 1.0
Sample 0 0.95 0.59 -0.59  -0.95 0 095 0.59 -0.59 -0.95 0
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2mkXi
PRECLASS 5 iy

Note B1 to B5 were sample values from 1, 2, 3,
4, 5 Hz sine waves

Sampleli] = sin(

time 00 01 0.2 03 0.4 05 06 07 0.8 0.9 1.0
Sample 0 095 0.59 -0.59 -0.95 0 095 0.59 -0.59 -0.95 0
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OBSERVE

Can identify frequencies with dot product

Identifying projection onto each basis vector
in Fourier Series

Works because frequency sine waves are
orthogonal

Performing a change of basis
From time-sample basis
To Fourier (sine, cosine) basis
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TIME AND FREQUENCY BASES

Time Sample basis
Also a multi-dimensional space
Dimension = # time samples
Vector [to,t1, .15, ....]
Frequency basis
Multi-dimensional

Dimensions = Coefficients of sine and cosine

components

f) =ap+ X5 (an cos nf—t+ by, sin an

Vector [ag,a1,b1,a2,bs,...]
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DISCRETE FOURIER TRANSFORMS

Fourier Transforms are nice,
but we want to store and process our signals with computers
We extend Fourier Transforms into Discrete Fourier

Transforms, or DFT
We know our music signal is now discrete: x(t) - x,

The signal contains N samples: 0 <n <N-1
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DFT — DISCRETE FOURIER TRANSFORM

Represent any sequence of time samples as

c ke k
nm nm
fk)=ay+ Z (an cos —+N b,, sin H’
n=1

Compute ay, b, by dot product
an = (Izv) =N (Sample[k]xcos (n%)
by, = (1%) k=N (Sample[k]xsin ("%)
A

2/13/19
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FREQUENCY-DOMAIN

How to make a song appear “periodic”
Treat the entire song as 1 period of a very complicated
sinusoid!
This is the assumption of the Fourier Transform

WARNING

Don’t get lost in mathematical notation

ESE 150 — Spring 2019
DFT — DISCRETE FOURIER TRANSFORM
(COMPLEX REPRESENTATION)
Represent any sequence of time samples as

N
nrk nrk
fk) =aq+ Z <an cos N—+ b, sin ﬁ

n=1
From Euler’s formula e?®=cos 6 + isin 8,

can also express as exponential
N-1
1 _.(2mnk
£ = £ xge )
n=0

Representation vector is [Xo,X1,...Xn-1];
Xk complex
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DFT — DISCRETE FOURIER TRANSFORM
(COMPLEX REPRESENTATION)

Represent any sequence of time samples as

N-1
1 _i 2nnk
PO = 3 Ko (5

Compute Xk by dot product

N-1
_l.2nkn
X, = Z xXpXe N
n=0
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DFT — DISCRETE FOURIER TRANSFORM
(CoMPLEX REPRESENTATION)

Compute Xk by dot product
N-1

2mkn
Xy = Z X Xe TN

n=0

Same as ... compute an, b, by dot product

In = (IZV) k=0 (Sample[k]XCos ("%)
by = (1%) =N (Sample[k]xsin (n%)
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DON’T LET NOTATION CONFUSE YOU
EXPANDING....

by, = (%) z (Sample[k]XSin (n%)

E.g. for n=2, this says

2 X X 2*271*1\ . 2*21‘[*1\
b, = (IT) dotproduct(Sample, [sin(0), sin ( ( 3

-, sin TR A

D

2
b, = (ﬁ) dotproduct(Sample, [0,095,0.59, ~0.59, —0.95,0,0.95,0.59, —0.59, ~0.95,0])

...which is dot product we performed in preclass 5

Don't let notation confuse vou...

e
DISCRETE FQURIER TRANSFORMS

A smaller sampling period means:
- more points to represent the signal
larger N
- more harmonics used in DFT
N harmonics
-> Smaller error compared to actual analog
signal we capture/produce

DFTs are extensively used in practice, since
computers can handle them
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DISCRETE FOURIER TRANSFORMS

A DFT transforms N samples of a signal in time domain
into a (periodic) frequency representation with N samples
So we don’t have to deal with real signals anymore

We work with sampled signals (quantized in time),

and the frequency representation we get is also quantized in time!
fx)

Music Signal in Discrete Time = lem‘.dhwﬂlj‘wJ

N-1

DFT(x,) = X, = Z xyxe 'R F)
n=0
v

usic Signal “Transformed” To Frequency Domain >

(sepwww.stanford.edu/oldsep/hale/FftLab.html) 58

|
APPROXIMATING THE SAMPLED SIGNAL
b ~ A

A signal sampled in time can be { o ¥
approximated arbitrarily closely ;

from the time-sampled values Original signal * /
(samples)

With a DFT, each sample gives us
knowledge of one harmonic Approximated “\ B /S
Each harmonic is a component VIS TARYA
used in the reconstruction of the K/
signal

The more harmonics we use, the
better the reconstruction

{ Cos[0g, Sin[1f], Cos[1f] , Sin[24], Cos[2q] , Sin[3q, Cos[30} &/

OE 10 = Spring 2019

10
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MORE SAMPLES > MORE HARMONICS—?LESS ERROR

7 Samples; 7 Harmonics
' w0

\\ {
o b o

11 Samples; 11 Harmonics 15 Samples; 15 Harmonics

\ -
L &%
o =

e
L

25 | 09 7s |05

A WINDOW OPERATION

In the example below, we traverse the signal but
only look at 64 samples at a time

pp” L 7 Freq

(sepwww.stanford.edu/oldsep/hale/FftLab.html)

63

Lecture 2

DAC - FILTERING
Digital-to-Analog (DAC) Conversion

What a capacitor does?
What happens when apply voltage across a resistor/capacitor?
We call this filtering in EE, (RC delays are everything)

Voltage Resistor-Capacitor

110 3 — R oW R

4| MM J_ g low
101 2 3 c £ Tigh R
100 1 —— time I time
ott—o————1— e fime (ms)
010 4 - 1.2 3 4 6 7 output circuit of DAC

holds 7 discrete voltages for 1ms

001 -2 each...applies it to RC filter,
000 3 —+ output is “smooth” analog signal

2/13/19
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SAVING RESOURCES

However, N can get very large
e.g., with a sampling rate of 48,000Hz
How big is N for a 4 minute song?
How many operations does this translate to?
To compute one frequency component?
To compute all N frequency components?
This is not practical. Instead, we use a window
of values to which we apply the transform
Typical size: ..., 512, 1024, 2048, ...

62

CONNECT THE DOTS

Intuition, with enough dots, not hard to
“connect-the-dots” to reconstruct (understand)
the continuous signal.

What is the continuous signal here? (preclass 3)

Assumes certain regularity conditions

What is enough? b

05

Value
°

0 0 15 « 20
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RECONSTRUCTION

Not really connect-the-dots in time
(previous explanation was oversimplified)

Recall near Nyquist rate
Could often miss the peak
Get poor sine waves
...look like peak moves around even if sampled above Nyquist rate
Better reconstruction
Convert to frequency

Which can perfectly represent up to half sampling rate
Reconstruct from frequency basis

11
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BIG IDEAS

Can represent signals in frequency domain
Different basis — basis vectors of sines and cosines

Often more convenient and efficient than time
domain £ o

Remember musical staff %., —<— i
Can convert between time and frequency

domain

Using a dot-product to calculate time or frequency
components

(0= %Jr i[an cos(nt) +b, sin(nt)]

n=1

2/13/19
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THIS WEEK IN LAB

Lab 4:

You will identify Frequency components using FFT in
Matlab

Bring headphones

Remember:
Lab 3 report is due on Friday
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LEARN MORE

ESE325 — whole course on Fourier Analysis
ESE224 — signal processing

ESE215, 319, 419 — reason about behavior of
circuits in time and frequency domains

REFERENCES

S. Smith, “The Scientists and Engineer’s Guide to
Digital Signal Processing,” 1997.

https://betterexplained.com/articles/an-interactive-
quide-to-the-fourier-transform/
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