

Lecture \#4 - Converting from time to frequency domain
ESE 150 -
DIGITAL AUDIO BASICS
Based on slides © 2009-2019 Koditschek \& DeHorn Additional Material © 2014--2017 Farmer

ESE 150 - Spring 2019
TEASER

Play this on piano:



How does musical staff represent sound?
What does vertical position represent?
Note shape?


## ESE 150 - Spring 2019

## INFORMATION

is / quarter note $\boldsymbol{\rightarrow} \mathbf{8}$ s of sound
How many bits to represent 8 s of sound with 16 b samples and 44 KHz sampling? $44 \mathrm{~K} \mathrm{~Hz} \times 16 \mathrm{~b} /$ sample $\times 8 \mathrm{~s}=5632 \mathrm{~K}=5 \mathrm{Mbits}$


Frequency Representation
How much information is this musical staff communicating?
How many keys on piano? $\rightarrow$ bits/note


## FREQUENCY REPRESENTATION

How much information is this musical staff communicating?
How many keys on piano? $\rightarrow$ bits/note
Let's say 8b duration
How many bits for 5 notes?
( $7 \mathrm{~b} /$ note $+8 \mathrm{~b} /$ duration) $\times 5$ note $=75$ bits?




|  | ESEE 150-Spring 2019 |
| :---: | :---: |
| LECTURE TOPICS |  |
| * Teaser: frequency representation |  |
| * Where are we on course map? |  |
| What we did in lab last week <br> How it relates to this week |  |
| The Fourier Series - can represent any signal The Discrete Fourier Transform (DFT) - can translate Change of basis |  |
|  |  |
| * Next Lab |  |
| $\times$ References |  |



## TIME-DOMAIN \& FREQUENCY-DQMAIN

## As an example...let's say we have a pure tone

If period: $T=1 / 2$ and Amplitude $=3$ Volts
$s(t)=A \sin (2 \pi f t)=A \sin (2 \pi 2 t)$


Time domain representation


ESE 150 - Spring 2019
FREQUENCY-DOMAIN
Of course, not all signals are this simple
For example: $\mathbf{s}(\mathbf{t})=\sin (2 \times 2 \pi \times t)+{ }_{2}{ }^{\mathbf{s}} \sin (2 \pi \times t)$
Question: What will the frequency representation look like?



ESE 150 - Spring 2019
Frequency-pomain
Another example



The time domain plot on the right is really the sum of 5 sinusoids, where 5 Hz is the strongest component of the signal


## So far...

we have seen how a signal written as:
a sum of sines of different frequencies
can have a frequency domain representation

## Each sine component...

is more or less important depending on its coefficient
Example: $\boldsymbol{s}(\boldsymbol{t})=1 \sin (2 \times 2 \pi \times t)+{ }_{2}^{1} \sin (2 \pi \times t)$
Can any arbitrary signal be represented as a sum of sines?

No. But the idea has potential, let's explore it!

ESE 150 - Spring 2019
Vector Space

We're familiar with multi-dimensional spaces and vector representation
E.g. Cartesian Coordinates in 2 Space

2 dimensions $X, Y$
Represent points as vector with 2 elements ( $\mathrm{x}, \mathrm{y}$ )
Preclass 4a
What is the ( $\mathrm{x}, \mathrm{y}$ ) coordinate of
the red dot?


## ESE 150 - Spring 2019

## ORTHOGONAL BASIS

We can describe any point in the space by a linear combination of orthogonal basis elements
E.g. Cartesian Coordinates in 2 Space
x -- [1,0]
$y$-- $[0,1]$
Any point:

$$
a^{*} x+b^{*} y=[a, b]
$$

Orthogonal - no linear scaling of one gives the other Dot products are zero Combine by linear superposition


## ESE 150 - Spring 2019

## VECTOR SPACE

We're familiar with multi-dimensional spaces and vector representation
E.g. Cartesian Coordinates in 2 Space

2 dimensions $X, Y$
Represent points as vector with 2 elements ( $\mathrm{x}, \mathrm{y}$ )
Can easily extend to 3 Space

$$
(x, y, z)
$$

Harder to visualize, but could extend to any number of dimensions
(d1,d2,d3,d4,d5,....)


## ESE 150 - Spring 2019

## Different Representations

We can also represent points in 2-space in polar coordinates

A different orthogonal basis (magnitude, $\Theta$ )
What is the polar coordinate of the red dot? (4b)


## Complex Numbers

Complex Numbers are an example of this
Real dimension
Imaginary dimension
Cartesian version: $\mathrm{a}+\mathrm{b} i$
Polar (Magnitude, angle) version: $M \times e^{i \theta}$
Euler's Formula: $e^{i \theta}=\cos \theta+i \sin \theta$
(revised)
The frequency domain \&
The Fourier Series

## ESE 150 - Spring 2019

## Fourier Series - more formally

The Fourier Theorem states that any periodic function $f(t)$ of period L can be cast in the form:
$f(t)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi t}{L}+b_{n} \sin \frac{n \pi t}{L}\right)$

The constants: $a_{0}, a_{n}$, and $b_{n}$ are called the Fourier coefficients of $f(t)$

HISTORY...

## Fourier series:

Any periodic signal can be represented as a sum of simple periodic functions: $\sin$ and $\cos$ $\sin (n t)$ and $\cos (n t)$ where $n=1,2,3$,
These are called the harmonics of the signal


ESE 150 - Spring 2019

## FOURIER SERIES (REVIEW OF KEY POINTS)

The idea of the series:
Any PERIODIC wave can be represented as simple sum of sine waves

2 Caveats:
Linearity:
The series only holds while the system it is describing is linear because it relies on the superposition principle
-aka - adding up all the sine waves is superposition in action Periodicity:

The series only holds if the waves it is describing are periodic Non-periodic waves are dealt with by the Fourier Transform We will examine that in the $2^{\text {nd }}$ half of lecture

Interlude
Close Encounters Mothership https://www.youtube.com/watch?v=S4PYI6TzqY k

NYQuIŞT

Remember we said we needed to sample at twice the maximum frequency

Now see all signals can be represented as a linear sum of frequencies
...and the frequency components are orthogonal Can be extracted and treated independently

## WHAT NOW?

In the first half of the lecture we introduced:
The idea of frequency domain
The Fourier Series
In the second half of the lecture:
Fourier Transform
See how to perform this time-frequency translation Examples that span a space

For example, might rotate 90 degrees in Cartesian coordinates
$b 1=\left[\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} 4, b 2=\left[\frac{1}{\sqrt{2^{-4}}} \frac{-1}{\sqrt{2^{4}}}\right.\right.$
Note dotproduct(b1,b2)=0
Represent points as linear combination: a*b1+c*b2




## Time and Frequency Bases

## Time Sample basis

Also a multi-dimensional space
Dimension = \# time samples
Vector $\left[\mathrm{t}_{0}, \mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}, \ldots.\right]$

## Frequency basis

Multi-dimensional
Dimensions = Coefficients of sine and cosine components
$f(t)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi t}{L}+b_{n} \sin \frac{n \pi t}{L}\right)$
Vector $\left[\mathrm{a}_{0}, \mathrm{a}_{1}, \mathrm{~b}_{1}, \mathrm{a}_{2}, \mathrm{~b}_{2}, \ldots\right]$

## ESE 150 - Spring 2019

## FREQUENCY-DOMAIN

How to make a song appear "periodic"
Treat the entire song as 1 period of a very complicated sinusoid!
This is the assumption of the Fourier Transform

## Discrete Fourier Transforms

Fourier Transforms are nice,
but we want to store and process our signals with computers
We extend Fourier Transforms into Discrete Fourier Transforms, or DFT

We know our music signal is now discrete: $x(t) \rightarrow x_{n}$
The signal contains $\mathbf{N}$ samples: $0 \leq n \leq \boldsymbol{N}-1$

## ESE 150 - Soring 2019

Warning
Don't get lost in mathematical notation

## DFT - DIscrete Fourier Transform

Represent any sequence of time samples as
$f(k)=a_{0}+\sum_{n=1}^{N}\left(a_{n} \cos \frac{n \pi k}{N}+b_{n} \sin \frac{n \pi k}{N}\right)$
Compute $a_{\mathbf{n}}, \mathbf{b}_{\mathbf{n}}$ by dot product

$$
\begin{aligned}
& a_{n}=\left(\frac{2}{N}\right) \sum_{k=0}^{k=N}\left(\operatorname{Sample}[k] \times \cos \left(\frac{n 2 \pi k}{N}\right)\right) \\
& b_{n}=\left(\frac{2}{N}\right) \sum_{k=0}^{k=N}\left(\operatorname{Sample}[k] \times \sin \left(\frac{n 2 \pi k}{N}\right)\right)
\end{aligned}
$$

DFT - DISCRETE FOURIER TRANSFORM
(COMPLEX REPRESENTATION)
Represent any sequence of time samples as

$$
f(k)=a_{0}+\sum_{n=1}^{N}\left(a_{n} \cos \frac{n \pi k}{N}+b_{n} \sin \frac{n \pi k}{N}\right)
$$

From Euler's formula $e^{i \theta}=\cos \theta+i \sin \theta$,
can also express as exponential

$$
f(k)=\frac{1}{N} \sum_{n=0}^{N-1} \boldsymbol{X}_{\boldsymbol{K}} e^{-i\left(\frac{2 \pi n k}{N}\right)}
$$

Representation vector is $\left[\mathrm{X}_{0}, \mathrm{X}_{1}, \ldots \mathrm{X}_{\mathrm{N}-1}\right]$; $\mathrm{X}_{\mathrm{K}}$ complex

## DFT - DISCRETE FOURIER TRANSFORM (COMPLEX REPRESENTATION)

Represent any sequence of time samples as

$$
f(k)=\frac{1}{N} \sum_{n=0}^{N-1} \boldsymbol{X}_{\boldsymbol{K}} e^{-i\left(\frac{2 \pi n k}{N}\right)}
$$

Compute $X_{K}$ by dot product

$$
X_{k}=\sum_{n=0}^{N-1} x_{n} \times e^{-i \frac{2 \pi k n}{N}}
$$

## ESE 150 - Spring 2019

## DON'T LET NOTATION CONFUSE YOU

EXPANDING:.::

$$
b_{n}=\left(\frac{2}{N}\right) \sum_{k=0}^{k=N}\left(\operatorname{Sample}[k] \times \sin \left(\frac{n 2 \pi k}{N}\right)\right)
$$

E.g. for $\mathrm{n}=2$, this says
$b_{2}=\left(\frac{2}{N}\right)$ dotproduct $\left(\right.$ Sample,$\left.\left[\sin (0), \sin \left(\frac{2 * 2 \pi * 1}{N}\right), \sin \left(\frac{2 * 2 \pi * 1}{N}\right), \ldots\right]\right)$ $b_{2}=\left(\frac{2}{N}\right)$ dotproduct (Sample, $\left.[0,0.95,0.59,-0.59,-0.95,0,0.95,0.59,-0.59,-0.95,0]\right)$
، ...which is dot product we performed in preclass 5


## Discrete Fourier Transforms

A smaller sampling period means:
$\rightarrow$ more points to represent the signal larger N
$\rightarrow$ more harmonics used in DFT N harmonics
$\rightarrow$ Smaller error compared to actual analog signal we capture/produce
DFTs are extensively used in practice, since computers can handle them

DFT - DISCRETE FOURIER TRANSFORM (COMPLEX REPRESENTATION)

Compute $X_{K}$ by dot product

$$
X_{k}=\sum_{n=0}^{N-1} x_{n} \times e^{-i \frac{2 \pi k n}{N}}
$$

Same as $\ldots$ compute $a_{\mathbf{n}}, b_{\mathbf{n}}$ by dot product

$$
\begin{aligned}
& a_{n}=\left(\frac{2}{N}\right) \sum_{k=0}^{k=N}\left(\text { Sample }[k] \times \cos \left(\frac{n 2 \pi k}{N}\right)\right) \\
& b_{n}=\left(\frac{2}{N}\right) \sum_{k=0}^{k=N}\left(\operatorname{Sample}[k] \times \sin \left(\frac{n 2 \pi k}{N}\right)\right)
\end{aligned}
$$

## APPROXIMATING THE SAMPLED SIGNAL

A signal sampled in time can be approximated arbitrarily closely from the time-sampled values Original signal With a DFT, each sample gives us knowledge of one harmonic Each harmonic is a component used in the reconstruction of the signal

Approximated The more harmonics we use, the better the reconstruction


## SAXING RESOURCES

## However, $\mathbf{N}$ can get very large

e.g., with a sampling rate of $48,000 \mathrm{~Hz}$

How big is N for a 4 minute song?
How many operations does this translate to?
To compute one frequency component?
To compute all N frequency components?
This is not practical. Instead, we use a window of values to which we apply the transform

Typical size: ..., 512, 1024, 2048, ...

## A WINDOW OPERATION

In the example below, we traverse the signal but only look at 64 samples at a time


[^0]
## CONNECT THE DOTS

Intuition, with enough dots, not hard to "connect-the-dots" to reconstruct (understand) the continuous signal.

What is the continuous signal here? (preclass 3)
Assumes certain regularity conditions What is enough?



## ESE 150 - Spring 2019 <br> BIG IDEAS <br> Can represent signals in frequency domain Different basis - basis vectors of sines and cosines <br> Often more convenient and efficient than time domain <br> Remember musical staff <br>  <br> Can convert between time and frequency domain <br> Using a dot-product to calculate time or frequency components <br> $$
f(t)=\frac{a_{o}}{2}+\sum_{n=1}^{N}\left[a_{n} \cos (n t)+b_{n} \sin (n t)\right]
$$

This Week In Lab
Lab 4:
You will identify Frequency components using FFT in Matlab
Bring headphones

Remember:
Lab 3 report is due on Friday

ESE 150 - Spring 2019
LEARN More
ESE325 - whole course on Fourier Analysis
ESE224 - signal processing
ESE215, 319, 419 - reason about behavior of circuits in time and frequency domains

## ESE 150 - Soring 2019 <br> References <br> S. Smith, "The Scientists and Engineer's Guide to Digital Signal Processing," 1997. <br> https://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform/


[^0]:    sepwww.stanford.edu/oldsep/hale/FftLab.html)

