

FREQUENCY REPRESENTATION

* How much information is this musical staff communicating?

* How many keys on piano? → bits/note

* Let's say 8b duration

* How many bits for 5 notes?

+ (7b/note+8b/duration) × 5 note = 75 bits?

LAB 2 POSTLAB

* You reproduced 800 samples of a 300Hz sine wave at 1000Hz with 8b precision
+ 6400b
* What did you need to specify to do that?
* How may bits to represent that?

CONCLUDE

* Can represent common sounds much more compactly in frequency domain than in time-sample domain

+ Frequency domain ~ 75b

+ Time-sample domain ~ 5Mb

Background
WHAT IS THE FREQUENCY DOMAIN?

FREQUENCY-DOMAIN

* So far...

+ we have seen how a signal written as:

* a sum of sines of different frequencies

+ can have a frequency domain representation

* Each sine component...

+ is more or less important depending on its coefficient

+ Example: s(t) = 1 sin(2×2π×t) + ½ sin(2π×t)

* Can any arbitrary signal be represented as a sum of sines?

+ No. But the idea has potential, let's explore it!

(new background setup)

VECTOR BACKGROUND

We're familiar with multi-dimensional spaces and vector representation

E.g. Cartesian Coordinates in 2 Space

2 dimensions X, Y

Represent points as vector with 2 elements (x,y)

Preclass 4a

What is the (x,y) coordinate of the red dot?

VECTOR SPACE

* We're familiar with multi-dimensional spaces and vector representation

+ E.g. Cartesian Coordinates in 2 Space

* 2 dimensions X, Y

* Represent points as vector with 2 elements (x,y)

+ Can easily extend to 3 Space

* (x,y,z)

+ Harder to visualize, but could extend to any number of dimensions

* (d1,d2,d3,d4,d5,...)

CRTHOGONAL BASIS

* We can describe any point in the space by a linear combination of orthogonal basis elements

+ E.g. Cartesian Coordinates in 2 Space

* x -- [1,0]

* y -- [0,1]

* Any point:

* a*x + b*y = [a,b]

+ Orthogonal – no linear scaling of one gives the other

* Dot products are zero

* Combine by linear superposition

CAN CHANGE REPRESENTATIONS

* Both Cartesian and Polar Coordinates can describe points in the same space.

+ How do we change polar to Cartesian? (4c)

+ What is the Cartesian coordinate for the red dot? (4d)

COMPLEX NUMBERS

* Complex Numbers are an example of this

+ Real dimension
+ Imaginary dimension

* Cartesian version: a+bi* Polar (Magnitude, angle) version: $M \times e^{i\theta}$ * Euler's Formula: $e^{i\theta} = \cos \theta + i \sin \theta$

FOURIER SERIES - MORE FORMALLY

The Fourier Theorem states that any *periodic* function f(t) of period L can be cast in the form:

$$f(t) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi t}{L} + b_n \sin \frac{n\pi t}{L} \right)$$

The constants: a_0 , a_n , and b_n are called the F<u>ourier coefficients of</u> f(t)

33

ESE 150 -- Spring 2019

FOURIER SERIES (REVIEW OF KEY POINTS)

- * The idea of the series:
 - Any **PERIODIC** wave can be represented as simple sum of sine waves
- × 2 Caveats:
 - + Linearity:
 - The series only holds while the system it is describing is linear because it relies on the superposition principle
 - × -aka adding up all the sine waves is superposition in action
 - + Periodicity:
 - $_{\times}$ The series only holds if the waves it is describing are periodic
 - × Non-periodic waves are dealt with by the Fourier Transform
 - * We will examine that in the 2nd half of lecture

37

NYQUIST

- Remember we said we needed to sample at twice the maximum frequency
 - Now see all signals can be represented as a linear sum of frequencies
 - + ...and the frequency components are orthogonal
 - × Can be extracted and treated independently

38

ESE 150 ... Spring 2010

INTERLUDE

- × Close Encounters Mothership
- https://www.youtube.com/watch?v=S4PYI6TzqY k

30

WHAT NOW?

- * In the first half of the lecture we introduced:
 - + The idea of frequency domain
 - + The Fourier Series
- * In the second half of the lecture:
 - + Fourier Transform
 - + See how to perform this time-frequency translation
 - + Examples

ESE 150 -- Spring 201

40

(new background setup)

VECTOR BACKGROUND

CHANGE OF BASES

* There are more than one set of basis vectors that span a space

• For example, might rotate 90 degrees in Cartesian coordinates

* $b1 = \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right), b2 = \left(\frac{1}{\sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$ * Note dotproduct(b1,b2)=0

* Represent points as linear combination: a*b1+c*b2

ESE 150 -- Spring 2019

TIME AND FREQUENCY BASES

- Time Sample basis
 - + Also a multi-dimensional space
 - + Dimension = # time samples
 - + Vector $[t_0,t_1,t_2,t_3,]$
- × Frequency basis
 - + Multi-dimensional
 - Dimensions = Coefficients of sine and cosine components
 - $+ f(t) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi t}{L} + b_n \sin \frac{n\pi t}{L} \right)$
 - + Vector [a₀,a₁,b₁,a₂,b₂,...]

49

ESE 150 -- Spring 2019

FREQUENCY-DOMAIN

- * How to make a song appear "periodic"
 - + Treat the entire song as 1 period of a very complicated sinusoid!
 - + This is the assumption of the Fourier Transform

50

SF 150 -- Spring 2019

DISCRETE FOURIER TRANSFORMS

- × Fourier Transforms are nice,
 - + but we want to store and process our signals with computers
- We extend Fourier Transforms into Discrete Fourier Transforms, or DFT
 - + We know our music signal is now discrete: $x(t) \rightarrow x_n$
 - $_+$ The signal contains N samples: $0~\leq n~\leq \textit{N}-1$

ESE 150 -- Spring 2019

WARNING

» Don't get lost in mathematical notation

5

51

SE 150 -- Spring 2019

DFT - DISCRETE FOURIER TRANSFORM

* Represent any sequence of time samples as

$$f(k) = a_0 + \sum_{n=1}^{N} \left(a_n \cos \frac{n\pi k}{N} + b_n \sin \frac{n\pi k}{N} \right)$$

× Compute an, bn by dot product

$$+ a_n = \left(\frac{2}{N}\right) \sum_{k=0}^{k=N} \left(Sample[k] \times \cos\left(\frac{n2\pi k}{N}\right)\right)$$

+
$$b_n = {2 \choose N} \sum_{k=0}^{k=N} \left(Sample[k] \times \sin\left(\frac{n2\pi k}{N}\right) \right)$$

ESE 150 -- Spring 2019

DFT – DISCRETE FOURIER TRANSFORM (COMPLEX REPRESENTATION)

* Represent any sequence of time samples as

$$f(k) = a_0 + \sum_{n=1}^{N} \left(a_n \cos \frac{n\pi k}{N} + b_n \sin \frac{n\pi k}{N} \right)$$

* From Euler's formula $e^{i\theta} = \cos \theta + i \sin \theta$, can also express as exponential

$$f(k) = \frac{1}{N} \sum_{n=0}^{N-1} X_{K} e^{-i\left(\frac{2\pi nk}{N}\right)}$$

 \times Representation vector is [X₀,X₁,...X_{N-1}]; X_K complex

54

ESE 150 -- Spring 2019

DFT – DISCRETE FOURIER TRANSFORM (COMPLEX REPRESENTATION)

* Represent any sequence of time samples as

$$f(k) = \frac{1}{N} \sum_{n=0}^{N-1} X_K e^{-i\left(\frac{2\pi nk}{N}\right)}$$

× Compute X_K by dot product

$$X_k = \sum_{n=0}^{N-1} x_n \times e^{-i\frac{2\pi k n}{N}}$$

55

ESE 150 -- Spring 2019

DFT – DISCRETE FOURIER TRANSFORM (COMPLEX REPRESENTATION)

∞ Compute X_K by dot product

$$X_k = \sum_{n=0}^{N-1} x_n \times e^{-i\frac{2\pi k n}{N}}$$

x Same as ... compute an, bn by dot product

$$+ a_n = {2 \choose N} \sum_{k=0}^{k=N} \left(Sample[k] \times \cos\left(\frac{n2\pi k}{N}\right) \right)$$

+
$$b_n = {2 \choose N} \sum_{k=0}^{k=N} \left(Sample[k] \times \sin\left(\frac{n2\pi k}{N}\right) \right)$$

56

ESE 150 -- Spring 2019

DON'T LET NOTATION CONFUSE YOU EXPANDING....

$$b_n = \left(\frac{2}{N}\right) \sum_{k=0}^{k=N} \left(Sample[k] \times \sin\left(\frac{n2\pi k}{N}\right)\right)$$

× E.g. for n=2, this says

$$b_2 = \left(\frac{2}{N}\right) dotproduct(Sample, [\sin(0), \sin\left(\frac{2*2\pi*1}{N}\right), \sin\left(\frac{2*2\pi*1}{N}\right), \dots])$$

 $b_2 = \left(\frac{2}{N}\right) dotproduct(Sample, [0,0.95,0.59, -0.59, -0.95,0,0.95,0.59, -0.59, -0.95,0])$

x ...which is dot product we performed in preclass 5

Don't let notation confuse vou...

PISCRETE FOURIER TRANSFORMS

** A DFT transforms N samples of a signal in time domain

+ into a (periodic) frequency representation with N samples

+ So we don't have to deal with real signals anymore

** We work with sampled signals (quantized in time),

+ and the frequency representation we get is also quantized in time!

Music Signal in Discrete Time \Rightarrow $DFT(x_n) = X_k = \sum_{n=0}^{N-1} x_n \times e^{-l^2 \frac{n}{N}}$ Music Signal "Transformed" To Frequency Domain \Rightarrow

(sepwww.stanford.edu/oldsep/hale/

DISCRETE FOURIER TRANSFORMS

- * A smaller sampling period means:
 - → more points to represent the signal larger N
 - → more harmonics used in DFT N harmonics
 - → Smaller error compared to actual analog signal we capture/produce
- DFTs are extensively used in practice, since computers can handle them

150 -- Spring 2019

APPROXIMATING THE SAMPLED SIGNAL

A signal sampled in time can be approximated *arbitrarily* closely from the time-sampled values oscillations

from the time-sampled values Origina (sample gives us knowledge of one harmonic Approx

Each harmonic is a component used in the reconstruction of the signal

The more harmonics we use, the better the reconstruction

[Cos[0f], Sin[1f], Cos[1f] , Sin[2f], Cos[2f] , Sin[3f], Cos[3f] }

ESE 150 -- Spring 2019

LEARN MORE

* ESE325 – whole course on Fourier Analysis

- * ESE224 signal processing
- ESE215, 319, 419 reason about behavior of circuits in time and frequency domains

ESE ISI

REFERENCES

- S. Smith, "The Scientists and Engineer's Guide to Digital Signal Processing," 1997.
- * https://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform/

)

70