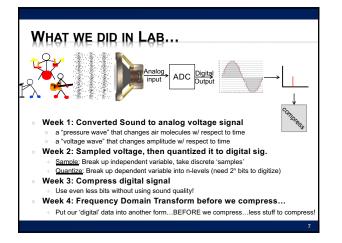
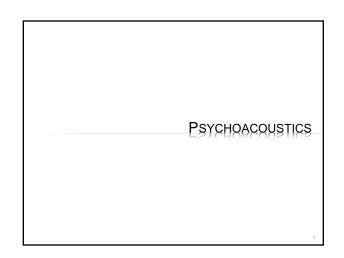

OBSERVE


There are sounds we cannot hear
 + Depends on frequency


LECTURE TOPICS

- × Where are we on course map?
- $\times\,$ What we did in lab last week
- * Psychoacoustics
 - Structure of Human Ear / encoding signals to brain
 Human Hearing Limits
 - Critical Bands (Frequency bins)
- + Masking
- × References

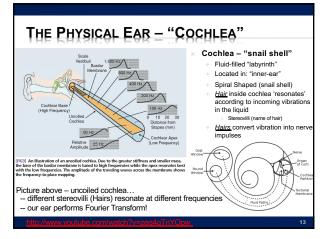
WHAT IS PSYCHOACOUSTICS?

× Scientific study of sound perception

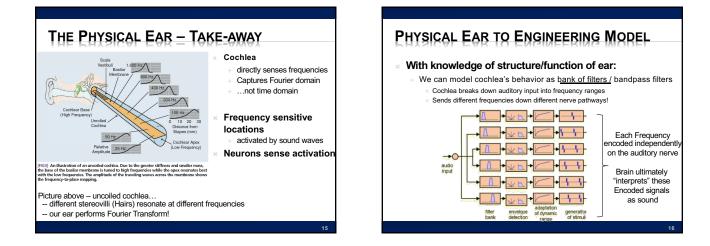
- Branch of science studying the <u>psychological</u> and <u>physiological</u> responses associated with sound
- + Also, considered a branch of: psychophysics
- + Human physical (and neurological) mechanism for sound perception
- Why study sound & human's perception?
 - Example: FREQUENCY vs. PITCH
 - <u>Frequency</u> of sound: "how often" air particles vibrate (Hz) <u>Pitch</u> of sound: the sensation of frequency * How our brains "interpret" the frequency of a sound

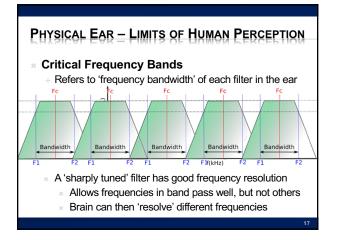
Things may "sound" one way...

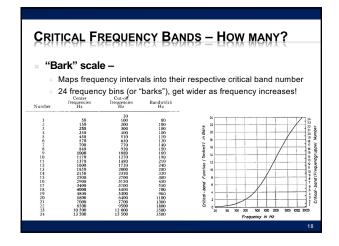
+ ...but be interpreted by our brains very differently!

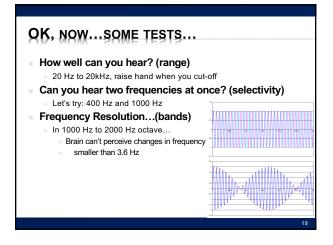

PSYCHOACOUSTICS & DIGITAL MUSIC

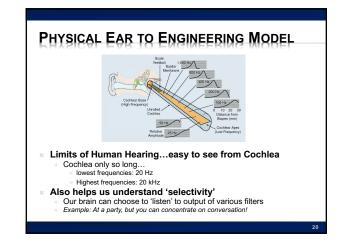
- * How does psychoacoustics relate to MP3?
- The "consumer" of an MP3 is the human ear...
 Knowing more about brain's interpretation of sound...
 ...helps us remove things human's can't hear anyway
- * We've used some of this in our system already:
- + Limit of human perception of sound: 20 Hz to 20,000 Hz
 × We put an anti-aliasing filter limiting incoming audio
 - + Fixes our sampling rate, less data to store as a result!

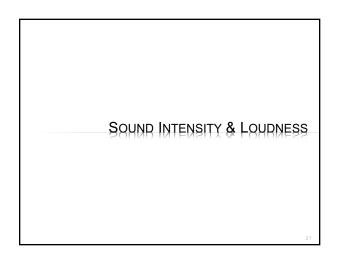

OUR STUDY OF PSYCHOACOUSTICS

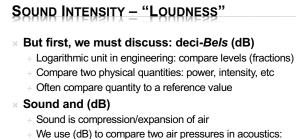

- * Structure of Human Ear / encoding signals to brain
- * Human Hearing Limits
- × Critical Bands
- Frequency Bins
- Masking (Spatial vs. Temporal)
- Applied Psychoacoustics (mostly next lecture)
 Using all of the above to build...the "Psychoacoustical Model"
 - Perceptual Coding in MP3 (using the model to compress MP3s)

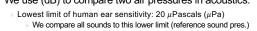

<section-header><section-header><section-header><text><text><text><list-item><list-item>

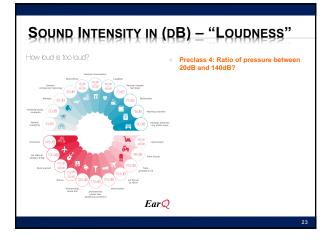


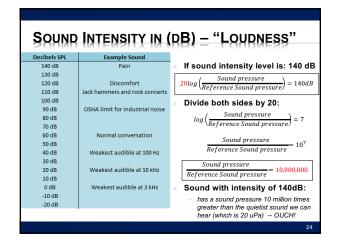




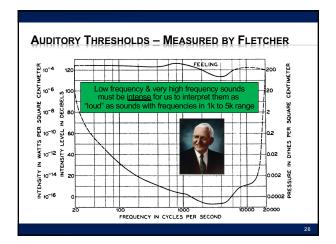






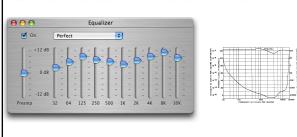


Loudness-Sound Pressure Level (LspL) = $20 * log_{10} \left(\frac{Sound pressure}{Reference Sound pressure} \right)$ in **dB**



SOUND INTENSITY IN (DB) - "LOUDNESS"

× Loudness -


- + subjective perception of intensity of sound
- × Intensity
 - Sound power per unit area
- * Does loudness change with frequency?
 - + Yes! Scientist: Harvey Fletcher (1940)
 - Measured loudness vs. frequency (Auditory Thresholds)
 Same 'amplitude' sound can sound very quite or really loud
 All depends on its frequency
 - + Turns out...

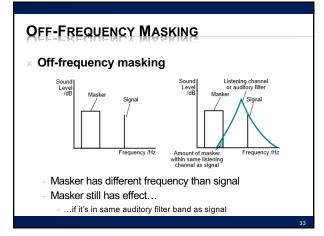
DEMONSTRATION

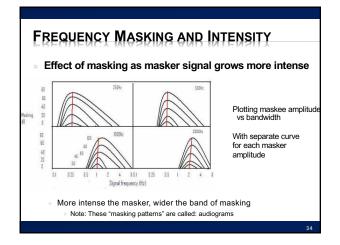
- × Same demo as before: 1 Hz to 20kHz
 - Instead of thinking about frequency cutoff (range)
 - Think instead about how "loud" the sounds at different frequencies are...
 - \times Which 'band' sounds 'loudest' to you?
 - \times Note: they are all at same amplitude, so equally intense
 - \times But we perceive sounds in 1 kHz to 5 kHz to be louder!

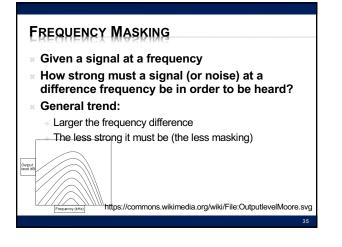
WHY DO WE SET EQUALIZER'S LIKE THIS?

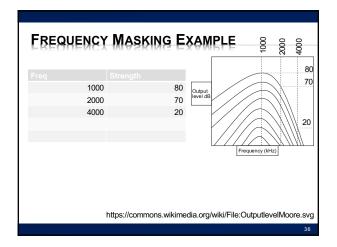
Makes all frequencies in our music sound "equally" loud!
 + Compare to Fletcher Curve

ANDITORY MASKING


MASKING


- × Auditory Masking
 - When the perception of one sound is affected by the presence of another
 Remember...perception
- Two two or
- × Two types:
 - + Frequency Domain Based: × Frequency Masking, simultaneous masking, spectral masking
 - + Time Domain Based:
 - × Temporal Masking / non-simultaneous masking


FREQUENCY DOMAIN MASKING


- Masking illustrates the limits of ear selectivity
 In fact, we measure ear selectivity using masking!
- × Vocabulary:
 - Masker The noise 'masking' the maskee
 - + Maskee The signal being 'masked' by masker

<section-header><section-header><text><text><text><figure><list-item><list-item><list-item>

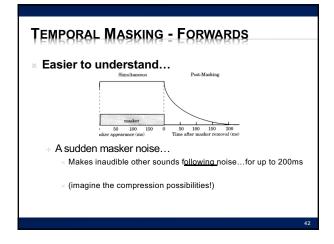
DEMONSTRATION

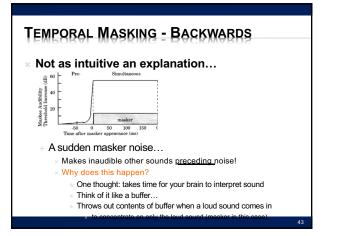
- Generate 900 Hz Tone (left channel) (maskee) + Turn gain all the way down (-36 dB)
- Generate 1000 Hz Tone (right channel) (masker)
 Keep gain at 0 dB
- × Play sound...
 - + Bring intensity of 900 Hz tone up so we can hear both tones
 - + Mute masker and play it again...
 × Maskee was always there, just couldn't hear it
 - $\!\times$ Even though it was at different frequency of masker

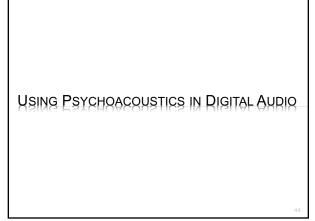
DEMONSTRATION

- × Generate 1000 Hz Tone (masker)
- Sweep frequency 1200Hz to 4000 Hz (masked) + About 20% of level of masker
- » Both constant loudness
- × Play sound…
 - + When begin to hear second signal?
- See diminished masking effects as frequencies get further apart

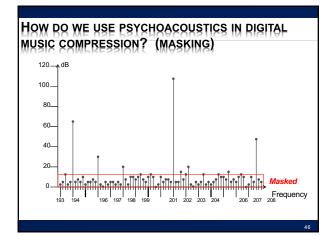
FREQUENCY MASKING @ HIGHER FREQUENCIES Plots of masking at several different frequencies:

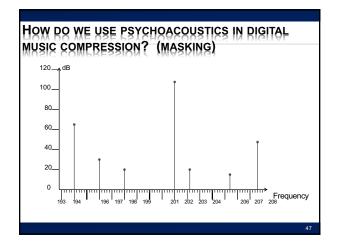

2000 2500 3000 3500 4000 4500

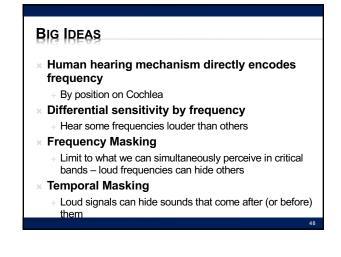

Effect of masking is 'worse' at higher frequencies Masking band gets wider at higher frequencies


FREQUENCY MASKING AND HARMONICS Masking can also occur at the harmonics of masker... ⁹/₉ 40 ⁹/₉ 40

While effect of masker is greatest at 200 Hz... × Also effects harmonics of masker signal!







How do we use psychoacoustics in digital MUSIC COMPRESSION? (RANGE) -6dB -12dB -18dB -24dB -30dE -36dE -42dE -48dE -54dE -60dB -66dE -72dE -78dE -84dE 1000Hz 2000Hz 4000Hz 6100Hz 10000Hz 20000Hz 40000Hz 70000Hz 200000Hz

LEARN MORE

- * BIBB417 Visual Processing + Same kind of look at physiology, but for vision
- × LING520 Phonetics 1
 - + Focus on speech, includes both hearing and production

COMING UP

- × In Lab
 - + Measure sensitivity and masking effects
 - Bring head phones

× Next Lecture

- + Put this together to compress audio
- + Derive key features of MP3

REFERENCES

- × Physical Ear:
- + R. Munkong and B.-H. Juang. IEEE Sig. Proc. Mag., 25(3):98–117, 2008 **Filter Bank:**
- + http://www.ugr.es/~atv/web_ci_SIM/en/seccion_4_en.htm
- * Bark Scale:
 - + [E. Zwicker. J. Acoust. Soc.Am., 33(2):248, February 1961] **DB Chart:**
- http://www.dspguide.com/ch22/1.htm_
 Masking Discussion:
- + Wikipedia: PsychoAcoustics Article