

Lecture \#6 - Psychoacoustic Model/Compression/MP3
ESE 150 -
DIGITAL AUDIO BASICS

FIRST MP3 PLAYER
MpMan -- 1998
SaeHan Information Systems South Korea
32MB of Flash memory
ESE150 Spring 2019

LECTURE TOPICS Teaser Where are we? Preclass How do we take advantage of psychoacoustics in MP3 Achieve this 6-12x reduction from CD Audio Review Tricks Formulate Optimization Adaptation Next Lab References

ESE150 Spring 2019

PRECLASS

4 critical bands
10 frequencies
16b amplitude
80b encoding budget
Preclass 2: amplitude quantization necessary to achieve budget?
Preclass 3: frequencies (reduced sampling rate) can keep to achieve budget?

ESE150 Spring 2019
Prectass
4 critical bands
10 frequencies
16b amplitude
80b encoding budget
Preclass 4
Bits to represent which frequency?
Bits to encode (frequency, amplitude) pair?
Number of (frequency,amplitude) pairs fit within budget?

Preclass
4 critical bands
10 frequencies
16b amplitude
80b encoding budget
Preclass 6: which likely to sound best?
Preclass 5
Amplitude quantization
Frequency quantization (reduce sampling rate)
Frequency selection based on masking

4 critical bands

10 frequencies
16b amplitude
80b encoding budget

- 80 b encoding budge

Which frequencies do we keep?

BACKGRROUNR

THE MPEG-1 STANDARD ©MPE $\mathcal{G}^{n 00}$

ISO (International Standards Organization)

Looking for ways to reduce transmission requirements for digita video and audio (low bandwidth transmission of digital media)
1988 - establishes a sub-committee of ISO:
Moving Picture Experts Group (MPEG)
Goal: Develop common standard for coding/compressing audio/video
To reduce size of data to transmit without sacrificing quality
Fraunhofer Institute and German University of Erlangen Lots of basic research in Digital Audio Broadcast, tapped to be MPEG

Result: 1992: Finalized Standard called: MPEG-1 (Phase I)
3 Parts: Audio/Video/System
Audio component: defined 3 layers: 1, 2, 3
Increasing levels of compression and complexity MPEG-1, layer 3 achieves 12:1 compression ratio! (for short MP3)

ESE150 Spring 2019
The MPEG-1 STANDARD
MPEG-1, (3) Layers for Audio Coding:

Complexity	Coding	Ratio	Required bitrate
	PCM CD Quality	1:1	1.4 Mbps
	Layer I	$4: 1$	384 kbps
	Layer II	8:1	192 kbps
	Layer III (MP3)	12:1	128 kbps

Why is PCM CD Quality 1.4 Mbps?
Recall: 1 sec. of music: $44,100 \times 16$ bits $=705,600$ bits
Don't forget stereo (R/L): $2 \times 706,600=1,413,200(1.4 \mathrm{Mbs})$ Defines bandwidth requirements of network
Notice: 128 kbps was just about double modem speed in 1992 Enables transmission of audio (MP3) via modem! (Napster!)

KNOBS WE CAN TURN
Amplitude quantization
Frequency quantization
Frequencies kept (per critical band)
Too soft
Masked
...and can perform lossless compression

Knobs we can turn

Amplitude quantization

Per band
Frequency quantization
Per band?
Frequencies kept (per critical band)
Per band
...and can perform lossless compression

OPPORTUNITIES/CHALLENGES
 Trying to hit fixed bit rate, what challenge does lossless compression impose?
 Encounter many common frequencies?
 Encounter many uncommon frequencies?

OPPORTUNITIES/CHALLENGES
What challenge/opportunities might these band spectra represent?

OPTIMIZATION PROBLEM

How fit in the resource constraints (128Kb/s) while maximizing goodness (sound quality)?

Optimization problems central to engineering
If more Huffman compressible, we get more frequencies If fewer frequencies suffice for one band,

Allow more frequencies for another
..or allocate less quantization

GOODNESSS/SOUND QUALITY

Error(freq) $=\mid$ OrigFreq Amplitude - Encoded \mid

Whole OrigFreq if dropped
|OrigFreq-Quantize(OrigFreq,bits)| if quantized

W(freq)

0 if below hearing threshold
0 if masked
Value between 0 and 1 if partially masked in critical band Really depend on what already encoded

OPTIMIZATION PROBLEM

How fit in the resource constraints (128Kb/s) while maximizing goodness (sound quality)?

Quantify bits used

$$
\sum_{\text {bands }} \sum_{f \in f r e q s} B i t s(f)
$$

Quantify goodness

ESE150 Spring 2019

APPROACH (GREEDY)

Start with nothing

Start with bitbudget
While(bitbudget>0)
Identify Largest Error component
Allocate some bits to reduce error
Add frequency
Add quantization bits to band
Pick one to most reduce the error

ADAPTIVE Refinement
Rediscovering where to allocate everything every time may be laborious
Maybe we can get close and adjust?
APPROACH (ADAPTIYE)

Start with budget guess

Quantization in bands
Frequencies to keep in each band
Encode, compress
What do if haven't used up all bits?
What do if over budget?
ESE150 Spring 2019
Approach (Refine Greedy)
Start with nothing
Start with bitbudget
While(bitbudget>0)
Identify Largest Δ error/ Δ bits
Why might prefer?
Large error, might take many bits to improve
Maybe could be better spending those bits to fix many problems?
\square

ESE150 Spring 2019

MP3 Encoding Process

All MP3 files broken into "Frames"

Each frame stores 1152 Audio Samples
Lasts for 26 ms
Frame also divided further into 2 "granuels" Each granuel contains 576 samples

MP3 Encoding Process acquire \& transform "frame" \square $\frac{\Delta}{D F T}$ - Bring in 1152 PCM samples - Use DFT/MDCT to transform to $\begin{array}{cc}\text { frequency-domain } & \\ \text { assign frequencies to bands }\end{array}$ use psychoacoustic model lookup to determine frequency bandwidth of each critical band separate samples into bands

BIG IDEAS

Can use pyschoacoustics to compress audio
Eliminate portions of signal that human's don't notice
Optimization
Identify Design Space (knobs)
Identify Costs and Constraints
Formulate quantitatively
Algorithms to approach
Iterative/adaptive approach
Deal with effects that aren't completely predictable

After Spring Break

Monday start of 2 week lab:
Perform perceptual compression Convergence of everything seen first 6 weeks Formal lab report on this 2 week lab No weekly lab report Friday (not out, yet)

Wednesday: midterm (class time)
Office Hours:
Cancel Thursday office hours
Add Tuesday 7-10pm

ESEE150 Spring 2019
MIRTERM = IN CLASS
Topics

Closed book, no notes	* Data representation in bits
Calculators allowed	Sounds waves
4:35pm-5:50pm	* Sampling
	* Quantization
5\% of grade prepare for final	\times Nyquist
	* Lossy/lossless compression - Common case
Last year's final and answers on 2018 syllabus	\times Frequency domain
	\times Psychoacoustics
	* Perceptual coding

ESE150 Spring 2019
Feedback
Note 2 sides
2 labs
2 lectures

References

Tutorials on Psychoacoustic Coding (in increasing order of abstraction and generality)
D. Pan, M. Inc, and I. L. Schaumburg. A tutorial on MPEG/audio compression. IEEE multimedia, 2(2):60-74, 1995
Nikil Jayant, James Johnston, and Robert Safranek Signal compression based on models of human perception. Proceedings of the IEEE, 81(10):1385-1422, 1993.
V. K. Goyal. Theoretical foundations of transform coding. IEEE Signal Processing Magazine, 18(5):9-21, 2001.
Lightweight Overview of MP3
Rassol Raissi. The theory behind mp3. Technical report, MP3' Tech, December 2002. Scientific Basis of MP3 Coding Standard

[^0] Journal on selected areas in communications, 6(2):314-323, 1988

[^0]: perceptual noise criteria. IEEE

