4/10/19

|
LECTURE TOPICS

Where are we on course map?
Overview of Today’s Lecture

Penn

Engineering

How/Where do we store our digital music?
Persistent Storage Technology

Filesystems
Abstraction 1: files/directories
Abstraction 2: b-nodes/i-nodes

Abstraction 3: filesystems

Lecture #11 — Storage/Filesystems Next Lab

ESE 150 —
DIGITAL AUDIO BASICS o waterio ® 2014 rarmor

7,89 10101001101 78,9 10101001101
COURSE MAP _ COURSE MAP - WEEK v)
MIC CPU OS/File- CPU \ :‘ OS/File-
N System N System
> AID Pl u > AD Pl 7 u
1. 7
: . N I~/ . \\
Music o ~7 o
6 %, ~ 6 %,
2, : 2
et % *ees® e
ysample freq pyscho- Cloud y sample freq pyscho-
\ acoustics (3)/ AN acoustics (3)/
\ (25 4 S . \ (25 4 4
S > \
D11 N\
NIC < DA
Y_J 7| Y_J
speaker MP3 Player/ iPhone / Droid speaker MP3 Player / iPhone / Droid
13

WHAT WE’LL COVER TOQDRAY... STORE AND FIND DATA

10101001101 Gor. -

The mighty
File System!

MP3 encoded Songs on Smart Phone
We discussed the idea of an OS ASSIgnments on your Iaptop
\ilualizeg Hardware Programs on eniac

Key part of any OS is its filesystem...we’ll talk about that today
From floppy disk/hard disk/compact disc/flash drive... “vifually” the same!

Last Lecture...

PERSISTENT STORAGE TECHNOLOGY

Flash-drives / Hard-drives

w0 —— | bitline
FLA S H ME M 0] RY wi =1 | bitiine bselect
w2 wo —||

w3 wl |
vz |

Two ways to configure FG transistors in Flash Memory
NOR/NAND w3 |
NOR -- Read like other memories
Fast, but not very dense...used when speed is a must gndselecﬁ
NAND - Sequential read within “page”
Denser than NOR, but slower, use when area is a must
Can only “erase” in blocks
4KB, 64KB->256KB
Once erased can write byte (page) at a time
Write time variable

Typically need feedback to sense when written

e
INTEL SOLID-STATE DRIVE (SSD)

Table 3. Maximum Sustained Read and Write Bandwidth
Access Type MB/s
Sequential Read up to 250
Sequential Write w to 170
Table 4. Random Read and Write Input/Output Operations per Second (IOPS)
Access Type 10PS
4K Read 35,000
4K Write 3,300

35,000/s x 4KB = 140MB/s

Table5. Latency Specifications
Type Average Latency
Read 75 ps (TYP)
Write 85 ps (TYP)
Power On to Ready s

SSDhttp://download.intel.com/design/flash/nand/extreme/extreme-sata-ssd-datasheet. p

4/10/19

|
FLASH MEMORY

A little like memory circuits we have learned about...
Except it is non-volatile or simply...persistent storage
Data won’t go away when power is turned off
Based on the “floating gate” transistor

Today’s Examples

Persistent storage in your MP3 player, cell phone
FYI: first iPod had a hard disk...

USB Flash drive
Solid-State Disk (SSD)

!AMSUNG !g E ng HXHB !LASH

Parameter Symbol Min 4 Linit
Program Time tPROG - 200 500 s >
Dummy Busy Time for Multi Plane Program tossy 1 10 us
Number of Partial Program Cycles | Main Array Nop - - 1 cycle
in the Same Page [Spare Amay . s 2 oyde
Block Erase Time toers - 2 3 ms
| R Puise widin tRe. 25 g ns
WE High to Busy twe - 100 ns
Read Cycle Time we d 50 - ns
CE Access Time teea - a5 ns
RE Access Time tREA - 30 ns
RE High to Output Hi-Z tRHZ - 30 ns
CE High to Output Hi-Z tcHz - 20 ns
RE or CE High to Output hold ton 15 - ns
'RE High Hold Time REH 15 - ns
Output Hi-Z to RE Low R 0 - ns
WE High to RE Low twHr 60 - ns
Device Resetting Time(Read/ProgamErase) tRsT - 5/10/500" us
Last RE High to Busy(at sequential read) we B 100 ns
TE High to Ready(in case of interception by CE at read) terY - 50 +tr(RB)® | ns
CE High Hold Time(at the last serial read)® toeH 100 - ns

|
FLASH MEMORY

Basic access time model
T~=A+ BxN
Large fixed expense A
Erase block for flash ~ 3ms
(less for read, but for simplicity we’ll keep that)
(Move in R and © for disk drives ~ 10ms)
High bandwidth B for sequential data

~100s of MB/s
B=10 ns

PRECLASS 1

Read N bytes: T=3ms + N*10ns

Randomly select an address
Read 4B
repeat

Randomly select an address
Read 4KB

repeat

THRQUGHPUT AND IMPLICATIONS

Flash throughput and access time
3ms latency
100MB/s throughput (~1B/10ns)

Throughput faster than access time

3ms seek - Random bit access

Sequential access 1000MB/s
Conclude:

Want to exploit sequential access!
Read blocks of data

HARD Disk

Each bit located at a position (R,0)

Head arm moves e
Varies R /%?=-=§\\
Disk spi 4&%@
isk spins VSO
[N

4/10/19

]
PRECLASS 1

Read N bytes: T=3ms + N*10ns
Randomly select an address

Read 4KB
repeat

]
.
HARD DRIVES [HARD DisKs (HD)

A collection of metallic “platters”
Each platter covered with magnetic material

Magnetic charge ‘stores’ 1 bit of information
Can vary charge across platter!

THROQUGHPUT AND IMPLICATIONS

Disk throughput and access time
10ms latency (move head in R, disk spin ®)
280MB/s throughput (~1B/4ns)

Throughput faster than access time

10ms seek - Random bit access 100b/s

Sequential access 280MB/s
Conclude:

Want to exploit sequential access!
Read blocks of data

4/10/19

|
How ORGANIZE DATA

Have technology to store bits
GB, TB of data

How do we find our data?

FILE Remembering one 40b address could be hard

How do we distinguish used/unused storage?
Make sure someone doesn’t overwrite our data

FILE

Example File: my_file.txt (14 characters)
I LOVE ESE150!

X49 x20 x4C x4F x56 x45
x20 x45 x53 x45 x31 x35

x30 x21 FILES = BLOCKS = PHYSICAL DisK

Mapping physical storage media to “bit/bytes/blocks”

01001001 00100000 01001100
01001111 01010110 01000101

A file is simply a collection of bits
Whether it's an ASCII file or a binary file (.docx, pdf, etc)
A program gives the bits meaning
Sequential access to bits efficient > useful to group together so can read all
at once

21

HOW IS A FILE STORED ? How WE STORE FILES ON PHYSICAL

MEDIA
A file is an abstraction of the physical storage media As we write data to a disk, we do it sequentially...
Media “independent” Data in File 1 = blue, Data in File 2 = red, Data in file 3 = grey...
Don’t care how technology is implemented, just read/write file! Sequentia"y written files have huge advantage in terms
Recall a file consists of: of access time...
A bunch of bits more so when we were dealing with hard disks,
Logically related but some advantage for flash memory, as well.

Ex: my_report.docx, etc
A file system is responsible
for providing this
abstraction of the disk

On storage media, at lowest

level, file is in “blocks” of bits

u

How WE STORE FILES ON PHYSICAL MEDIA

First Model
File

start address

Length

Allocate space sequentially
Keep track of first
free address

But what happens when...
Delete file?
Append to a file? —

25

How WE STORE FILES ON PHYSICAL MEDIA

We could also lengthen file1 (blue file)...
Ex. Now need six (blocks) to store file
How accommodate?

27

How WE STORE FILES ON PHYSICAL MEDIA

First Model
File

start address

Length
Allocate space sequentially
Keep track of first
free address

Problem:
Can never reclaim space when freed up

4/10/19

DELETING FILES

Let’s say we shorten file1 (blue file)...
We now have 2 open spaces (blocks) on disk
What happens when write a 4t file of 4 blocks?

How WE STORE FILES ON PHYSICAL MEDIA

We could also lengthen file1 (blue file)...
Ex. Now need six (blocks) to store file

How accommodate? . %

How WE STORE FILES ON PHYSICAL MEDIA

Second Model
File
start address
Length
Allocate space where will fit
Keep track of list of free regions

Search for free region that has enough
space to hold file

=
1

30

FRAGMENTATION

Want to add 4 block file

How WE STORE FILES ON PHYSICAL
MEDIA

Third Model
File
Collection of blocks
Not necessarily contiguous
Allocate unused set of blocks
Use pointers/links to connect together

33

How WE STORE FILES ON PHYSICAL
MEDIA

Third Model
File
Collection of blocks
Not necessarily contiguous
Allocate unused set of blocks
Use pointers/links to connect together

[l

[,

A,

‘ Il

5

4/10/19

FRAGMENTATION

Second Model
File

start address

Length

Allocate space where will fit

Keep track of list of free regions
Search for free region that has enough
space to hold file

Problem:
Space becomes fragmented
May have enough space, but not contiguous

PHYSICAL MEDIA DEFECTS

Physical media often has errors
Bits that cannot be written or won'’t hold their values

Also prevents making all files contiguous

H

s

3

e,

Il

FRAGMENTATION

Fragmentation is a fact of life

But who is keeping track of all this
fragmentation?
Filesystem!

Note: de-fragmentation software built into OSs now

4/10/19

FORMATION OF A FILE /[FILESYSTEM

Represent File

Not always just a sequence of bits on the media
When files become fragmented...

How account for and manage fragmentation?

VWHAT IS A FILESYSTEM? How do we know where freespace is?
For that matter...

How are all the files kept track of, or even found on the disk?
The file system

Part of the operating system that organizes/keeps track of the disk
To understand what its keeping track of, we need to see what afile is...

0
FILE REPRESENTATION FILE AS LINKED BLOCKS
4
File is not just a sequence of bits File is a linked set of blocks
Contains some data about it Reserve last 6 Bytes of file 8 =
Length to point to next file in block
Type (or indicate end-of-file) 12
Timestamp,
Set of pointers to the data (when large) 16 &
Allowing the data to be non-sequential
20
end

FILES As LINKED BLOCK FILES AS LIST OF BLOCKS

File is a block that has pointers
to all the files in the block

12

16

20

a
9

FILES AS TREE OF BLOCKS 0 z=ms

o Th 1T
File is tree overlaying blocks 4 o
Leaf nodes hold data 8
Non-leaf nodes hold pointers to
More-non-leaf nodes 12

Leaf data blocks

16
20

PRECLASS 2 FULL SWEEP

B lovels read reenode totaltime ESE 150 - Lecturo 10 (Fle Systems) Preciass 2
2 300064001 00900152003
. 15 300126001 004501920015
8 10 300256001 00300256001
16 8 3005120.01 0.02404096008 Tree traversal time
3 6 301024001 001806144008 . -
o s 302068001 001510240005
128 5 304096001 001520460005
255 4 30192001 001232768004
si2 4 316304001 001265536004
1024 3 332768001 000996304003
2008 3 3553001 001096608003
4096 3 431072001 001208216003
a2 3 562144001 001686432003
16304 3 824288001 002472864003
32766 2 1348576001 002697152002
55536 2 zoris00
131072 2 44943040.01 0.08988608002 ! ! 100
202144 2 sesse0e001 0728 oty e ey
524288 2 torrzie 034t
1048575 2 wsu0 0sT7osees
207152 2 om0 e
104304 2 rasT0 269035456
assec08 2 om0 saransrz
16777216 2 sme 1074Ee
assasnz 2 tonosszi0 2148083648
7108864 2 247783480 4295567296
124217728 2 42952672960 850534592
268435455 2 eswzuse0 171804918
s36670012 2 171801601840 3436033637

FILES 2 I-NODES = B-
NODES/BLOCKS

B-nodes/ . n the Linux OS

i-node
blocks
Wiode om] Popular filesystem named: ext3
Owner info D . .
e = erived from original
Timestatps fowe] Unix File System (UFS)
Direct Blocks USES i-nOdeS
(12 pointers) What is an i-node?
A data-structure that represents
a file on the storage media
Tnditect blocks Consists of file information:
Double Indirect Owner, size, timestamp, etc.
“Triple Indicect Also 15 pointers

12 pointers that point directly to
“blocks”

3 additional pointer that point to other
pointers! (indirect blocks)

4/10/19

PRECLASS 2

10° data items

Assume at bottom of balanced tree

Each tree-node has c leaves

Directory i-node to hold c leaves needs
32xc Bytes

How many tree nodes must visit?

How long to read a tree node?

Time to lookup item (traverse tree)?
c=2, c=108, c=10°

WHAT DOES UNIX DO?

FILES = I-NODES => B-NODES/BLOCKS

i-node 52)7;:;:/ How does it work?
Miode If a file only needs 12 blocks on

Owner info m dlSk
N

See 12 direct block pointers are used
Tiesans
Each of them point to a *bnode” or
“block” of data on the disk

Direct Blocks

a1 If a file requires 13 blocks...
12 direct blocks are set/allocated
1 indirect block is also needed

(12 pointers)

Indirect blocks

Double Indicect

“Triple Indicect

- |
FILES 2 I-NODES 2 B-

NODES/BLOCKS

i-node Bt;l’g‘f:/ What exactly is a b-node?
4 < N Smallest unit of storage allocation
Owner info

L fowe | ! Fixed-size of data on the disk itself
Timestamps \\/ Typical sizes:
= 512 bytes for hard drives
Direct Blocks 2048 bytes for CDs/DVDs
4096 bytes (4kB) for todays drives
Smallest “addressable” unit on disk
Example: bnode address 76
Would get 76 x 4096 = 311,296"
byte on flash
Address actually maps to physical
address on(flash, disk}
Example: bnode address 76
R=1.012in, 6=32.07 degrees
Actual location on disk

Wode

(12 pointers)

Inditect blocks

Double Indirect

Triple Indicect

FILES = I-NODES = B-NODES/BLOCKS

Bnode’s structure:
Bnode contains metadata (like a header)
Description of data to follow
Block type, File type, length
Bnode contains data itself (contents)
This is actual data for the file in question
Example shows only a 3172 block file (could use all 4072 bytes)

Type/ length 24 Bytes metadata
Example:
3172 Bytes
4096 Byte Block contents
bnode

900 Bytes unused

FILES 2 I-NODES 2 B-
NODES/BLOCKS

How help with shortening or appending to file?

Typel length 24 Bytes metadata 76:

:
3172 Bytes \

Block contents :
900 Bytes unused

4/10/19

- |
FILES 2 I-NODES = B-

NODES/BLOCKS
i-node Bﬁgs,f:i/ At 4KB / Bnode
Mode -
O 5 . How lar fil n
O o] Oow large a | e ca
Teangs represent using
Orecrlocks only Direct Blocks?
(12 pointers) y H
(assuming get full
4KB block for data)
Triple Indirect

FILES 2 I-NODES 2 B-
NODES/BLOCKS

Bnode’s structure:
bnode contains metadata (like a header)
Description of data to follow
Block type, File type, length
Alternatively...can be table of pointers (indirect block)
Can be a multi-level tree if necessary (doubly/triply indirect)

obj, 15,791 -

ypeliizngin 24 Bytes metadata 76

3172 Bytes
Block contents

900 Bytes unused

SIZE OF B-NODE/BLOCK
REPRESENTATION

Why not make block sizes smaller? (say 1-bit)
How about 1 bit at a time? Addressing each bit wouldn’t be easy...
1 TB disk ~ 9 trillion bits...9 trillion addresses!
Most times files are larger than just a few bits
Why not make block sizes larger? (512, 2048, 4096 bytes)
Usually, we transfer “blocks” of data to/from media at a time
Why not go larger?
Remember, block size is, smallest unit of addressable space

L 24 Bytes metadata In this 4kB block, 900 bytes

Example: are wasted
4096 gyt g? 72kBytetS " “Internally fragmented”
bnode ock contents / No way to ‘un-fragment’

900 Bytes unused unless file itself grows

B-NODE/BLOCK SIZE

Performance: Balance
Number of blocks need to read
Efficiency of reading large blocks

Space efficiency: Balance
Internal fragmentation
Overhead for metadata and links

HOw KEEP TRACK OF FILES?

Add another file that tells us where the files are
Directory
On ext3 filesystem...
Directories are just files themselves!
Pairs of (Name, i-node)
Contain pointers to other nodes

..and since files can be directories

Directories can contain directory files
...which can contain directory files...

Leading to a directory hierarchy

SUPERBLOCK

For bootstrapping and file system management

Each file system has a master block in a canonical
location (first block on device)

Describes file-system type
Root bnode
Keeps track of free lists ...at least the head pointers to
(bnodes, blocks)
Corruption on superblock makes file system
unreadable
=>Store backup copies on disk

4/10/19

LEVELS OF ABSTRACTI

N
R

W
\I\!\‘“

i

i B-nodes/
i-node ke i

Mode £ N %

Owner info \ =

Size m] pryurs N
Timestamps A — pd Lowest Level to Highest Level of Abstraction
DictBlods Physical Location on disk.

(12 pointers) R=1.012in, §=32.07 degrees

Double Indicect

) Block of data
Indirect blocks oo | 4096 continuous bytes on disk
o] SRS
Indivect Blocks Datastructure representing block of datg
inode /file

“Triple Indicect

Datastructure representing many blocks|
of data

Programmers work here (file level)
saves us from knowing about physical
details which may change across

|
UNIX SYSTEM FILE STRUCTURE
This is called

the “rOOt”
directory
“ “ o

Below
“home” is up
to eniac
admins

aAaBpBE - B B2

ESE150 “Home directory” is /lhome1/elese150 or simply: ~
Because the structure under “home” is typically different on all unix systems,
~ is a convention, and is always points to your home directory

|
FORMAT DISK

Identify all non-defective bnodes
Defective blocks skipped
=>» those addresses not assigned to bnodes

Create free bnode data structure
Create superblock

10

Disk DATA SECURITY

How is security enforced?
OS demands credentials for login
User doesn’t get direct access to hardware
OS intermediates

6.

‘ ‘

OS’s AND THEIR FILESYSTEMS

Typically an OS has a native filesystem it supports:
Early PC OS: DOS (Disk Operating System)
File system: FAT (File Allocation Table)
Early Apple OS: Macintosh’s “System”
File system: MFS (Machintosh File System)
Today's PC OS: Windows
File System: NTFS (New Technology File System)
Today'’s Apple OS: Mac OSx
File System: HFS+ (Hierarchical File System)
Today's Linux OS: Ubutnu, Debian, Fedora, Red Hat, SUSE, etc)
File System: EXT (Extended File System)
Now a days, many OS include support for more than one file system
Example...CDs/DVDs have their own file system:
CDs: CDFS (Compact Disc File System): ISO 9660
DVDs: UDF (Universal Disk Format)

THIS WEEK IN LAB

Lab 10: Design multi-view file system
As might want for MP3 player

Lab posted

4/10/19

SECURITY CAVEATS

On standard Unix/Windows setups
Without the OS to provide protection,
all the data is accessible
Sometimes good for recovery
On standard Unix/Windows setups
rm/del doesn’t make the data go away
Also sometimes useful for recovery

Even format does not guarantee data overwritten

See: Remembrance of Data Passed: A Study of Disk Sanitization Practices

What about iPhone?

BIG IDEAS...

Often have fixed+per-item cost: T=A+B XN
For data access (data transmission)
Also for size of structures
-> Benefit to dealing with blocks of data as a group
Need organization to
Hide physical media details
Self-describe data layout
When must delete and resize

Helps to build from data structure of blocks
rather than demand one contiguous unit

LEARN MORE AT PENN!

Online reading/pointers
Unix File System Tutorial
Flash, SSD, Hard drive data sheets
Data found on hard drive articles
Courses
CIS121 — efficient data structures
CIS380 — operating systems

71

11

