

PHYSICAL CONNECTION

* Place an I/O datapath in each computer

* String wire between computer's IO peripheral

* E.g. one wire from A→B, another B→A

MULTIPLE TASKS – MULTIPLE WIRES?

* Back to wired connections

* E.g. download song and browse

- Could have a separate interface/wire for each application

- Process allocates hardware when needs to communicate

| Scalability | Source: Kopiesperre CC Share-alike 3.0 | https://wikivisually.com/wiki/Fiscalemet_Hosts_Count_log.svg | 100 |

How MANY CONNECTIONS?

Conclusion: need to look at capacity as well as scalability of a network solution

BANDWIDTH REQUIREMENTS AND COSTS

WIRES * How fast can I send data over a wire? x Consider a Category-5 Ethernet cable Bandwidth (bits/s) 1Gbit/s – 1000Base-T (Gigabit ethernet) Latency/transit time (distance/time) 0.64 c [c=speed of light = 3×108 m/s] 0.192 m/ns or roughly 5ns/m [image: http://en.wikipedia.org/wiki/File:Cat 5.jpg

COMPARISON: AUDIO (PRECLASS 3)

- * Real-Time stereo (2-channel) MP3
 - + 128Kbits/s
 - + How many can share 1Gbit/s link?
- * How long to download 3 minute song at full rate?
- * How long for first bit to travel across 4000km wire at 0.6 × speed-of-light?

COMPARISON: VIDEO (PRECLASS 3)

- **HDTV** compressed
 - + Around 36Mbits/s
 - + How many can share 1 Gbit/s link?

COSTS (PRECLASS 4)

- × Cat 5e per foot ~ \$0.20/foot
 - + Say \$0.60/m
 - + Raw wire
 - Ignoring handling to run
 - Ignoring rent/lease/buy land to run
 - + Philly → San Francisco: ~4,000km
 - + Wire cost?

- Today's wire bandwidth exceeds the throughput needs of any real-time single-stream data
 - Can afford to share the wire
- Wires are not cheap

IMPLICATIONS?

+ Cannot afford not to share the wire

SHARING (VIRTUALIZING) CONNECTIONS

PACKET

** Begin to form a packet

+ Header: says where to go
+ Payload: the data to send

** Header:

- Added, consumed by network handling in routing

** Payload:

- Only thing seen by the application processes

TRANSPORT LAYER

* Call this the "Transport" Layer

+ responsible for delivering data to the individual application process on the computer

OSI MODEL OF A NETWORK

The Seven Layers of OSI

Application Layer
Presentation Layer
Session Layer
Session Layer
Transport Layer
Network Layer
Data Link Layer
Physical Layer

Session Layer
Data Link Layer
Physical Layer

** OSI – Open Systems Interconnection Reference Model
Developed in 1980's; maintained by ISO
Abstract different functions of a network into layers
Each layer only knows about layer above and below (at the interface level)
Think of it like this: your "Application" doesn't know if its on a wired or wireless network (physical layer)...but it knows it needs a network!

VIRTHOLIZE PHYSICOL WIRES

EXTENDED PACKET

* Extend our packet header:

- Destination computer

- Process on destination computer

- Sending computer

- Process on sending computer

and then she said... 10 A 34 B

SIMULATION 2

* Send 4 verses or digits from each

+ from song-server serving 2 songs

+ And digit-server serving 2 fundamental constants

+ To two clients

SIMULATION 2

SA1 Server SA2

T1

Host

N2

Host

Host

N4

CA3 Client

CA4

42

N1, N3

Add network-layer source/destination packet headers
W1 – Wire
Duplicate packets to both destinations
Simulate shared wire

N2, N4

Look at network-layer source/destination header
Discard packets not destined for this computer

ROUTING

** B runs a general program

** If packet destined for B, takes it

** Otherwise, sends on to (toward) destination

** Extension of the network handling process that is sorting data to processes

REACHABILITY

- × If everyone plays along
 - We can communicate with any computer reachable transitively from my computer
- * Don't need direct connections

ROUTING → ROUTE TABLES

- To make efficient
 - + Each computer should route close to destination
 - + ...and not route in circles
- E.g. compute all-pairs shortest paths (CIS160,121)
 - + Store result, each machine knows where to send packet next
 - + How much storage?
 - Cleverness to compress/summarize
 - Additional cleverness to compute incremental updates
 - When add a computer or a link breaks

51

NETWORK LAYER

- * Responsible for end-to-end packet delivery
 - + Source to Destination
 - + This includes routing packets through intermediate hosts

The Seven Layers of OSI

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Javar

SIMULATION 3

- Send 4 verses or digits from each
 - + from song-server serving 2 songs
 - + And digit-server serving 2 fundamental constants
 - + To two clients
- * R1 pass along packets to R2 (for now)
- * R2 look at address and send to N2 or N4

53

SIMULATION 4

** Send 4 verses or digits from each

- from song-server serving 2 songs

- And digit-server serving 2 fundamental constants

- To two clients

** Roles:

- 4 server apps

- Network Interface, 2 servers

- 3 routers

- R1 - flip a coin and send to R2 or R3

- R2, R3 - send to N2, N4 based on address

- Network Interface for each of 2 clients

- 4 client apps

PROTOCOLS

* So far, we've discussed a protocol called IP:

+ IP = Internet Protocol

* Delivery to processes (rather than hosts): UDP

+ UDP = Unreliable Datagram Protocol

SIMULATION 5

Send 4 verses or digits from each
from song-server serving 2 songs
And digit-server serving 2 fundamental constants
To two clients

Deliberately delay data through R3
Model non-determinism in route timing

SIMULATION 7

* Send 4 verses or digits from each

- from song-server serving 2 songs

- And digit-server serving 2 fundamental constants

- To two clients

* Roles:

- 4 server apps

- Network Interface for each of 2 servers

- 3 routers, connect to both servers and endpoints

- One link is via text messaging

- Network Interface for each of 2 clients

- 4 client apps

DATA CORRUPTION

* How do we deal with data corruption?

- + Use redundancy
- × Two strategies:
 - + Use enough redundancy to correct
 - + Use just enough redundancy to detect it
 - × Have the sender resend

DATA CORRUPTION

- × Relatively uncommon
 - + Most packets are fine
- We have efficient (low overhead) ways to detect
 - Compute a hash of the message data
 - + Highly unlikely one (few) message bit errors will result in same hash
 - → checksum

71

REVISER PACKET

* Header
Data payload
Checksum

* Checksum

* B3 and the she sald... 3 10 A 34 C

LOST PACKET

* How can we deal with lost packets?

12

CORRUPTED ACK

* What if the ack is lost?

+ Sender resends

* Receiver receives a second copy

+ Oops, don't want that to be interpreted as new data

+ i.e. send: "rm *; cd ..\n"

* Receive: "rm *; cd ..\n rm *; cd ..\n"

AVOID DUPLICATION

* How can we avoid duplication?

ACCOMMODATING DUPLICATION

* Use packet sequence number

- Keep track of last packet received
- If receive packet again,

* Discard the packet

B3 I was born,

2 10 A 34 C

TCP

* TCP = Transmission Control Protocol

- + Provides Reliable delivery
- + Deals with
 - × Retransmission
 - Duplication
 - × Out of sequence / resequence / reconstruction

TRANSPORT LAYER

Call this the "Transport" Layer

responsible for reliably delivering data to the individual application process on the computer

81

BIG IDEAS

- Sharing Network interface, wires
 - + Previously gates, processor, memory
- Virtualization datastream abstracts physical point-to-point link
- Layering
 - + Divide-and-conquer functionality
 - + Implementation hiding/technology independence
 - + Reliable communication link from unreliable elements

THIS WEEK IN LAB

- × Lab 11:
 - + Look at naming, addressing, network diagnostics, ...
 - + Including a packet sniffer!
 - $\scriptstyle\times$...see all the bits on the network you aren't supposed to see!
 - $\ensuremath{\mathsf{G}}$ Get an appreciation for what is going on, on the lower network layers

85

