
ESE 150 – Lab 07: Digital Logic

ESE 150 – Lab 7 Page 1 of 22

 Digital Logic Lab
In this lab we will do the following:

1. Investigate basic logic operations (AND, OR, INV)
2. Learn a bit about FPGAs (Field Programmable Gate Arrays)
3. Implement an adder on an FPGA
4. Implement an Accumulator on an FPGA

Background:

In lecture, we discussed the 3 basic logic operations: AND, OR, NOT (inversion). We examined
each operation and learned that these operations can be implemented using a logic gate. We
went further to see how we could implement any truth table in terms of these basic logic gates.
We created a multi-bit adder by “cascading” full adder circuits. We saw how to store state in
registers and create state-dependent logic in the form of Finite-State Machines (FSMs).

We also saw Field-Programmable Gate Arrays—programmable chips that could be configured to
implement any network of gates and flip-flops.

In lab today, we’ll see how to program these FPGAs to build logic, arithmetic, and stateful
functions.

FPGAs (Field Programmable Gate Arrays):

Field-Programmable Gate Arrays contain an array of programmable gates.

In the particular FPGA we will be using, each programmable gate is called a Logic Cell (LC) and
can be programmed to implement any gate of 4 inputs. The 4-input LC gate is essentially
programmed by specifying its truth table. Since it is a 4-input gate, it requires 24=16 bits for its
programming. The LC also has provisions to support carry chain logic so that adder bits can be
implemented with a single LC rather than with two. Each LC is also associated with an optional
Flip-Flop (DFF) to hold state. These gates are arranged in a two-dimensional array, and
programmable routing allows us to connect the inputs of any gate (LC) to the outputs of any
other gate (LC) or the pins of the FPGA chip. Similarly, the programmable routing allows us to
connect the output pins on the FPGA chip to the outputs of one of the gates. The particular device
we will be using for this lab has 1280 LCs on it.

While not essential for this lab, you can find the datasheet for the FPGA we will be using:
http://latticesemi.com/view_document?document_id=49312
The software we will be using to program the part is open source and can be found:
http://www.clifford.at/icestorm/
Preclass Section 2 will walk you through the installation.

ESE 150 – Lab 07: Digital Logic

ESE 150 – Lab 7 Page 2 of 22

Prelab: Part 1

 Submit your answers to this part to the Lab 7 prelab assignment on Canvas before Monday
lab session. Course staff will review before or at the beginning of the lab session.

1. Write the truth table for each of the following functions. Note that “Out” is the output
and “p1” and “p2” are two inputs. “p3” is a third input.

a. Out = NOT(AND(p1, NOT(p2))
b. Out = OR(AND(p1, p2), NOT(p3))

2. A Full Adder (FA) is a useful 3-input, 2-output logic function out of which we can

implement larger addition operations. The basic function of a full adder is to take in 3
input bits, count the number of ones, and produce a 2-bit output to represent the sum.
Mathematically: 2⋅carry + sum = i0+i1+i2

That is, if we treat the three inputs as 1-bit values taking on 0 or 1, then we can sum
them up and get a value between 0 and 3. We represent the result in a 2-bit binary
number, calling the least significant bit the sum, and the most significant bit the carry.

Complete the truth table for the Full Adder
 inputs outputs

i0 i1 i2 carry sum
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

3. The FA can be expressed in gates. Write a logical expression in terms of AND, OR, and
NOT gates for each of the two outputs (sum, carry) for the FA. You may use gates with
more than 2 inputs.

4. Given two FA gates, how would you compose them to perform a 2-bit addition (take in
two 2-bit values and produce one 3-bit result)? (Hint: how do we add bits of equal
significance? What do we do with the carry? Why did we define the FA as having 3
inputs?)

5. Given k FA gates, how would you compose them to perform a k-bit addition (take in two
k-bit values and produce one (k+1)-bit result)?

6. Explain why we need (k+1) bits to represent the result of a k-bit add.

ESE 150 – Lab 07: Digital Logic

ESE 150 – Lab 7 Page 3 of 22

Part 2: Install IceStorm Tools on your laptop

Windows

1. We will more or less follow the installation instructions found under “Testing iceprog”
here: https://github.com/FPGAwars/toolchain-icestorm/wiki#testing-iceprog
They have pictures of the process there, so it will be helpful to follow along with their
instructions as well.

2. Go to https://github.com/FPGAwars/toolchain-icestorm/releases/ and download the
toolchain-icestorm-windows_x86-1.11.1.tar.gz package under v1.11.1.

3. Install 7-zip if you haven’t got it already.
4. Right click the downloaded .tar.gz file and click on 7-zip -> Extract Here. This should

create a .tar file.
5. Right click on the .tar file and click on 7-zip -> Extract Here again. This should create a

folder called toolchain-icestorm-windows_x86-1.11.1.
6. If you look inside, there should be a folder called bin.
7. Take note of the path to the bin folder. It should be something like

“D:\Downloads\toolchain-icestorm-windows_x86-1.11.1\bin”. You’ll need it later. To
copy the path, you can open up bin and click the filepath in the bar at the top. It should
turn into highlighted text, which you can copy with Ctrl + C.

8. Set up the necessary drivers for the ICEstick, following the instructions under “Driver
installation” here: https://github.com/FPGAwars/libftdi-cross-builder/wiki#driver-
installation

MacOS

1. We will mostly follow the instructions under “Testing in MAC” here:
https://github.com/FPGAwars/toolchain-icestorm/wiki#testing-in-mac
They have pictures of the process there, so it will be helpful to follow along with their
instructions as well.

2. Go to https://github.com/FPGAwars/toolchain-icestorm/releases/ and download the
toolchain-icestorm-darwin-1.11.1.tar.gz package under v1.11.1.

3. Extract the package to obtain a .tar file, then extract it again to obtain a folder
containing another folder called bin.

4. Take note of the path to bin. You’ll need it later. You can right click on the folder, press
the Option key, and select “Copy ‘bin’ as Pathname” to copy the path.

5. Follow the rest of the instructions on the other page to set up the necessary drivers.
Make sure to install libftdi instead of libftdi0.

6. If you have issues, you may also want to check out the instructions here:
http://www.clifford.at/icestorm/notes_osx.html

ESE 150 – Lab 07: Digital Logic

ESE 150 – Lab 7 Page 4 of 22

Part 3: SSH into ENIAC

ENIAC is the name of the server running in SEAS that all engineering students have access to. The S drive
that you are already familiar with is the home directory of your account on ENIAC. To remotely access
ENIAC from a personal computer, we will use SSH: Secure Socket Shell. You can read more about SSH
and its history here: http://docstore.mik.ua/orelly/networking_2ndEd/ssh/ch01_01.htm

SSH is often run from a unix-based command line. An SSH client is included by default on MacOS, Linux,
and Windows 10 (as of 2018). You can use the following instructions to log into the ENIAC. If you are
running an older version of Windows, there are instructions for how to install an SSH client below.

1. Open	a	terminal	window	(make	sure	to	use	PowerShell	on	Windows,	since	some	
commands	won’t	work	in	Command	Prompt)	

2. Type	the	following	command,	replacing	PENNKEY	with	your	PennKey	
ssh PENNKEY@eniac.seas.upenn.edu	

3. If	prompted,	type	‘y’	(or	‘yes’	on	Windows)	to	add	to	known	hosts.	When	prompted,	enter	
your	password	

4. You	should	see	a	welcome	message:	

5. Type	exit	to	logout	
exit

6. You	can	copy	data	back	and	forth	from	windows	using	scp.	
a. Open	a	console	window	on	your	laptop.	

The	scp command	takes	in	two	space-separated	arguments:	the	source	and	the	
destination.
Copy	from	eniac:	
scp PENNKEY@eniac.seas.upenn.edu:~ese150/logic/section1.v
section1.v

ESE 150 – Lab 07: Digital Logic

ESE 150 – Lab 7 Page 5 of 22

b. Look	at	the	file	you	downloaded	(use	Ctrl/Cmd	+	C	to	exit):	
more section1.v

c. Copy	the	final	back	to	your	account	on	eniac:	
scp section1.v PENNKEY@eniac.seas.upenn.edu:

 Note: there is a colon at the end of the command. It is important. It is separating the
machine name (eniac.seas.upenn.edu) from the path, which is empty to denote the top level of your
personal home directory.

d. Ssh	back	into	eniac	and	verify	you	copied	the	file	into	your	personal	directory	on	
eniac:	

ls (you should see the filename section1.v printed out)
more section1.v

Older versions of Windows

If your personal computer is running an older version of Windows, there are lots of SSH clients that are
easy to download and run. A popular one is called PuTTY:

1. Download	PuTTY	from	their	website:	
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html		
Under	“Package	files”	select	the	“MSI	(‘Windows	Installer’)”	appropriate	for	your	OS	(most	
likely	64	bit).		
This	will	install	all	of	the	PuTTY	utilities,	but	if	you	just	want	what	you	need	for	this	lab,	you	
can	choose	just	putty.exe	and	pscp.exe	in	the	“Alternative	binary	files”	section.	

2. Open	the	putty.exe	file	once	the	download	is	complete.	
3. Enter	the	hostname	in	the	form	PENNKEY@eniac.seas.upenn.edu,	replacing	it	with	your	

actual	PennKey.	

ESE 150 – Lab 07: Digital Logic

ESE 150 – Lab 7 Page 6 of 22

4. Select	“Open.”	If	prompted,	select	‘Yes’	on	the	popup,	and	then	enter	your	password.	
5. You	should	see	the	welcome	message:	

Now you have remote access to the ENIAC computer.

6. Type	exit	to	logout:	
exit

7. To	copy	files	with	scp,	you	can	follow	the	steps	in	the	previous	section	(step	6),	but	use	the	
pscp	command	instead	of	scp.	

ESE 150 – Lab 07: Digital Logic

ESE 150 – Lab 7 Page 7 of 22

Lab Procedure:

Lab – Section 1: Working with a USB FPGA
● In this section, you’ll learn how to compile simple combinational logic in Verilog for an FPGA

1. Your Lab 7 kit should include an iceStick USB FPGA, PMOD switches (2 kinds), PMOD Y-

cable, and a USB Extension cable.
2. In a terminal window, create a directory for your work for this lab by entering the following

commands into the terminal. If you are on a Windows computer, make sure to use
PowerShell instead of cmd.

i. mkdir ese150logic
ii. cd ese150logic

The mkdir (make directory) command will create the directory/folder. The cd
command (change directory) will change into the new directory, like opening up a
folder and looking inside.

3. Copy the files you will need for this lab into the directory you just created:
scp PENNKEY@eniac.seas.upenn.edu:~ese150/logic/* .

Note that the above command ends with a space and a dot (.);
The cp (copy) command is taking in two arguments, separated by spaces: the source
and the destination.
In Linux, * refers to “everything”, and . refers to the current directory
(ese150logic). So, ~ese150/logic/* is selecting everything in the
~ese150/logic directory, and . is selecting your current folder. cp then copies
~ese150/logic/* to ., so there should be some new files in ese150logic. You
can check this by entering the command ls to list the contents of the current directory.

4. If you’re on a Mac/Linux laptop, sure the shell script is executable. chmod is short for
“change mode”, and we’re adding the ability to execute (+x) the file to build.sh.

i. chmod +x build.sh	
5. Make sure to change the IceStorm installation location in build.sh by opening it up

with a text editor and changing the path in the quotes on line 11 to wherever your IceStorm
installation is located. If you copied it after installing, paste it here to replace the text in the
quotes.

i. If you are on Windows, change all backslashes “\” to forward slashes “/”.
6. Connect PMOD Switches up to the FPGA.

- We will be using the following iceStick Lattice FPGA:

ESE 150 – Lab 07: Digital Logic

ESE 150 – Lab 7 Page 8 of 22

- The following parts will be needed for this lab (from top to bottom):

o ice Stick FPGA
o Pmod extension cable
o Male to male headers
o Pmod switches
o Pmod buttons

- As a side note, Pmod means “peripheral module” and refers to a standard of

connections by Digilent, the company that makes the buttons and switches.

ESE 150 – Lab 07: Digital Logic

ESE 150 – Lab 7 Page 9 of 22

i. Connect the male to male headers to the end of the PMOD cable with 12 holes:

ii. Connect the Pmod buttons to the end of the Pmod extension cable that has 6 holes
and is labeled A, and the Pmod switches to the other end. The buttons and switches
should look as follows:

iii. Connect the Pmod extension cable with the male to male headers to the FPGA, such
that the side labeled A faces outward:

ESE 150 – Lab 07: Digital Logic

ESE 150 – Lab 7 Page 10 of 22

iv. Connect the USB extension cable to the FPGA. It should now look as follows:

v. Lastly, connect the FPGA to the Linux computer (the smaller of the two Dell
machines) at your lab station. Now, some of the LEDs on your FPGA may turn on, if
the FPGA was used and programmed in the past:

- There are five LEDs on the FPGA, labeled D1, D2, D3, D4, and D5:

ESE 150 – Lab 07: Digital Logic

ESE 150 – Lab 7 Page 11 of 22

7. Review the Verilog file section1.v to see how it encodes combinational logic.
The first section looks like the header signature on a C or Java function and serves a similar
role. Here, it defines the input and output signals. This is the top-level for our design on
the FPGA. It is defining the Inputs and Outputs for the entire FPGA. We will use this same
Input/Output configuration for the entire lab. The key outputs are the LEDs, and the key
inputs are on the PMOD connector, which you wired in the previous step. Also included is a
clock signal (clk), which we will not use for this part of the lab.

`default_nettype none
module demo(
 input clk,
 output LED1,
 output LED2,
 output LED3,
 output LED4,
 output LED5,
 input PMOD1, // input p1
 input PMOD2, // input p2
 input PMOD3, // input p3
 input PMOD4, // input p4
 input PMOD7, // will use for section 2
 input PMOD8, //
 input PMOD9, //
 input PMOD10 //
);

Following this we declare some internal variables. These are similar to local variable
declarations in C and Java. Here, the only type is “wire” meaning a combinational signal.

// Alias inputs
 wire p1;
 wire p2;
 wire p3;
 wire p4;

// Alias outputs
 wire o1;
 wire o2;
 wire o3;
 wire o4;
 wire o5;

ESE 150 – Lab 07: Digital Logic

ESE 150 – Lab 7 Page 12 of 22

Following this, we have some assignments. These are simply giving more friendly names to
signals, in this case the inputs, for use with this piece of logic.

 assign p1=PMOD1;
 assign p2=PMOD2;
 assign p3=PMOD3;
 assign p4=PMOD4;

Note that p1=PMOD1 is physically BTN0 on the Button Module. Similarly, p4=PMOD4 is
BTN3. We have one more assignment which serves to directly connect one of the inputs to
a signal we will connect to the output:

 assign o5=p4; // output directly controls

We place the actual logic in the next section. The <= symbol is used for logic assignment (it
is not a comparison operation). This logic demonstrates how Verilog expresses and (&), or
(|), and invert (!) Boolean operators we introduced in the introduction.
 always // combinational assignment -- always computing
 begin
 // <= is used for logic assignment
 o1<=p1 & p2; // and together two inputs
 o2<=p1 | p2; // or together two inputs
 o3<=!(p1 & !p2); // use a not !
 o4<=(p1 & p2) | !p3; // compound logic expression
 end

In the final section, we have more assignments to connect the logical outputs computed by
the logical expression to the module outputs.
// Wire up the lights
 assign LED1 = o1;
 assign LED2 = o2;
 assign LED3 = o3;
 assign LED4 = o4;
 assign LED5 = o5;

8. Compile and download the section1.v Verilog file to the FPGA:

i. Working in the same terminal window and directory where you just copied the files
run the command. This executes the build script with section1 as an argument.

./build.sh section1
ii. You will see the output of the compilation and download steps scroll by. Then the

LEDs will glow dim then return to a state with some on and others off. At this point,
the FPGA should be programmed and ready for use.

ESE 150 – Lab 07: Digital Logic

ESE 150 – Lab 7 Page 13 of 22

9. Review the output of the compilation process and note the resources used. In particular,
look at the section1.log file that was created during the build process. You can open
this in a text editor or use a terminal command:
 more section1.log

Look for the following section:

After packing:
IOs 14 / 96
GBs 0 / 8
 GB_IOs 0 / 8
LCs 4 / 1280
 DFF 0
 CARRY 0
 CARRY, DFF 0
 DFF PASS 0
 CARRY PASS 0
BRAMs 0 / 16
WARMBOOTs 0 / 1
PLLs 0 / 1

This says we are using 4 LCs (Logic Cells) out of 1280 and 14 IOs out of 96. The 4 LCs are for
each of the 4 expressions we compute. None of them have more than 4 inputs, so they can
each fit into a single LC.

10. Use the input switches and LEDs to verify the truth table for the basic logic functions and

the simple combinational logic in the Verilog file. Record the truth table for o4 and include
with your lab report.

ESE 150 – Lab 07: Digital Logic

ESE 150 – Lab 7 Page 14 of 22

Lab – Section 2.1: Writing your own combinational logic
● In this section you’ll learn how to write simple combinational logic in Verilog and implement

your FA and multi-bit adder from the preclass.

1. Copy section1.v to section2fa.v:

 cp section1.v section2fa.v

2. Edit section2fa.v and change the Verilog logic equations in section2fa.v to implement your
full adder from Prelab Question 3.

a. Declare wire variables for i0, i1, i2 and assign the inputs i0, i1, i2 to the inputs
PMOD1, PMOD2, and PMOD3.

b. Write your logic equations for sum and carry inside the always block in place of the
logic that was in Section 1.

c. Connect the output sum to LED1, output carry to LED2.
3. Compile and download your section2fa.v.

./build.sh section2fa
4. Use the inputs and LEDs to verify the truth table for your full adder in section2fa.v.

a. Debug your logic as necessary.

ESE 150 – Lab 07: Digital Logic

ESE 150 – Lab 7 Page 15 of 22

Lab – Section 2.2: Building a 4-Bit Adder
1. Edit section2add4.v.
2. Revise the Verilog logic equations in section2add4.v to produce a 4-bit adder:

a. We have setup the inputs and outputs for you. This shows that you can declare
multi-bit variables in Verilog similar to arrays in C or Java. Here, a and b are each 4-
bit values. c and o are 5-bit values.

// Alias inputs
wire [3:0] a;
wire [3:0] b;
wire [4:0] c; // you will likely use

// Alias outputs
wire [4:0] o;

We assigned a and b to the PMOD inputs for you.
// assign inputs to signals with meaningful names
 assign a[0]=PMOD1;
 assign a[1]=PMOD2;
 assign a[2]=PMOD3;
 assign a[3]=PMOD4;

 assign b[0]=PMOD7;
 assign b[1]=PMOD8;
 assign b[2]=PMOD9;
 assign b[3]=PMOD10;

Note that we can use the array notation to refer to individual bits in the a and b variables.

Also, note that b[0]=PMOD7 is physically SW1 on the Digilent Switch Module. Likewise,
b[3]=PMOD10 is SW4.

b. Create your adder by replicating the full adder logic equations you have already
written for each set of inputs and connecting the carry out (c[i]) between the bits of
the full adders. Treat the carry input to your circuit (c[0]) as 0.

3. Compile and download section2add4.v to your FPGA.

ESE 150 – Lab 07: Digital Logic

ESE 150 – Lab 7 Page 16 of 22

4. Consult the output of the compilation process and note how many LCs your 4-bit adder

uses.

5. Use the inputs and LEDs to verify the correct function of your 4-bit adder:

a. If we were to exhaustively test your adder, how many test cases (sets of input
values) would there be? (that is, how large would the truth table be?)

b. Test at least the following cases: 0+1, 0+2, 0+4, 0+8, 1+0, 2+0, 4+0, 8+0, 1+15, 2+15,
4+15, 8+15, 15+15, 5+2, 2+5, 7+1, 1+7.

c. Test 4 more “random” cases.

ESE 150 – Lab 07: Digital Logic

ESE 150 – Lab 7 Page 17 of 22

Lab – Section 3: Working with Verilog Arithmetic
● In this section, you’ll learn how to write simple arithmetic in Verilog

Arithmetic is common in Verilog, so you can also write arithmetic expressions directly.

1. Review the Verilog file section3add4.v to see how it encodes a simple addition.
Here, we simply tell it to perform addition on the multi-bit variables using the multi-bit addition (+)

operator. The rest of the code in section3add.v is the same as the setup you saw for
section2add.v.

	
always // combinational assignment -- always computing
 begin //
 o<=a+b;
 end

	
2. Compile and download the section3add4.v Verilog file to the FPGA:

a. Note the inputs are the same as the end of Section 2.
b. Record resources required (LCs and CARRY) and explain them. Note that it now uses

CARRY logic resources.
c. Use the inputs and LEDs to verify the correct function of this 4b adder. Perform the

same tests as you did at the end of Section 2.

ESE 150 – Lab 07: Digital Logic

ESE 150 – Lab 7 Page 18 of 22

Lab – Section 4: Working with State in Verilog
● In this section, you’ll learn how to maintain state in Verilog. You won’t have to submit

anything for this section, but it should give you the information you need to complete
Section 5.

In Verilog, we can write logic that includes state in registers.

1. Review the Verilog file section4fwd.v to see how it encodes a simple clockwise rotation of
the LEDs.

We now use the reg type instead of wire to denote that these variables are registers (flip flops).
They will hold state and can be controlled to only change their values at clock edges. We
declare these as multi-bit values.

// Manage 12MHz clock
 reg [24:0] counter;
 reg [1:0] dec_cntr;

The clock on the iceStick board runs at 12MHz. Unfortunately, if the LEDs changed at 12MHz, we

wouldn’t be able to track them. So, we start by slowing the rate of advance down to 0.5
seconds. We do this by counting to 6 million between each of the sequential logic
operations. Each time the clock counter reaches 6 million, we reset it and increment the
counter for the LEDs. Since this is sequential logic, we only want the logic to operate in
response to a clock edge. We specify that by telling the always block to operate on the
positive clock edge, when the clock goes from low to high.

// The 12MHz clock is too fast
// ...count to 6 million to divide it down to a half second clock
 always@(posedge clk)
 begin
 counter <= counter + 1;
 if (counter == 6000000)
 begin
 counter<=0; // reset counter
 dec_cntr <= dec_cntr + 1; // count half seconds
 end
 end

ESE 150 – Lab 07: Digital Logic

ESE 150 – Lab 7 Page 19 of 22

We use combinational logic to select LEDs based on values of the dec_cntr:
// Make the lights blink -- each light activated on a
different value of 2b half-second counter
 assign LED1 = (dec_cntr == 0) ;
 assign LED2 = (dec_cntr == 1) ;
 assign LED3 = (dec_cntr == 2) ;
 assign LED4 = (dec_cntr == 3) ;

3. Compile and download section4fwd.v

a. Watch how lights behave and relate to logic.
4. There’s nothing to submit for this section, but you’ll need to be able to understand how to

use registers for Section 5. Hopefully, this is a useful example.

ESE 150 – Lab 07: Digital Logic

ESE 150 – Lab 7 Page 20 of 22

Lab – Section 5: Implement an accumulator in Verilog
● In this section you’ll implement an accumulator in Verilog

An accumulator is a unit that keeps a sum of all the inputs that it has been given since being reset.

(Note that the large piece of ENIAC in the first floor ENIAC Suite is labeled “Accumulator 18”.)
Since it remembers the previous sum, it must maintain state in registers.

We will build an 8b unsigned accumulator with 4b unsigned inputs. That is, the accumulator can store

values between 0 and 28-1=255 and take as inputs values between 0 and 24-1=15. Since we
only have 5 LED outputs on our iceStick USB FPGA, we will need to share them between the low
4b of the accumulator value and the top 4b of the accumulator value.

Our complete set of inputs will be:

● 4b of input – use the 4 on-off switches (Digilent switch module, PMOD7 through PMOD10,
SW1 through SW4); we call these in[3:0].

● Reset – to set the accumulator value back to 0; use a momentary switch (Button Module,
PMOD1, BTN0), which we will call p_reset.

● Read-input – to take in the current value of the 4b input and add it to the accumulator
value; use a momentary switch (Button Module, PMOD2, BTN1), which we will call p_input.

● Show high nibble – to tell the FPGA to display the top bits (bits 7—4 of the 8b accumulator
value) on the LEDs. When this is set low, the LEDs should show the bottom bits (bits 3—0) ;
use a momentary switch (Button Module, PMOD3, BTN2), which we will call p_high.

One challenge is to make sure that each p_input button press results in only a single addition of
the input in[3:0] to the accumulator. To do that, we want to demand that we only take a valid
keypress if p_input was previously 0. We use the previous_p_input register to hold the
previous value of p_input.

We have setup the input and outputs for you in section5start.v. This includes the counter from
section4fwd.v so that keypresses are considered only every 0.1 seconds.

HINT: If you want to set the output values (such as LED1) within an “always” block, don’t write
“assign” before the output name. For example, instead of writing “assign LED1 = accum[0]”,
simply write “LED1 = accum[0]”.

ESE 150 – Lab 07: Digital Logic

ESE 150 – Lab 7 Page 21 of 22

1. Copy section5start.v to section5acc.v
2. Revise section5acc.v to behave as an accumulator as described above.

a. Add your accumulator logic along with the counter reset as noted.
b. Add your output select logic in the LED output section at the end as noted.

3. Test your design on a number of summation sequences.
a. Reset the accumulator and add a 1 for 20 times; use the show high nibble to

check full counter value.
b. Reset the accumulator and add a 15 for 13 times. What result should the

accumulator hold? Use the show high nibble to check full counter value.
c. Reset the accumulator and add the integers from 1 to 6. What result should the

accumulator hold? Use the show high nibble to check full counter value.
d. Create a sequence of 6 random integers between 0 and 15. Note their sum.

Reset the accumulator and add the integers. Use the show high nibble to check
full counter value.

4. Record the LC resources needed by your design.
5. Show your accumulator to your TA for your exit ticket.

a. TA will direct you to demonstrate a test of a different sequence of numbers.
b. TA will review Verilog code.
c. TA will ask questions about the design.

ESE 150 – Lab 07: Digital Logic

ESE 150 – Lab 7 Page 22 of 22

Postlab
1. How many LCs will be required for a two input, 16-bit adder (adds together two 16b

inputs to produce one 17b output)?
2. Based on LC usage, how many 16-bit adders could you put on the FPGA used on the

iceStick? (recall the FPGA has 1280 LCs)
3. How many 16-bit adders do you need to implement a combinational 16-bit multiplier

(multiplies two 16b values to produce one 32b output)?
Recall that you can multiply two numbers by summing shifted copies of the multiplicand. For

16b numbers:

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦(𝐴, 𝐵) = /
0123

014

𝐵[𝑖] × 2𝑖 × 𝐴	

B[i] represents the ith bit of B, similar to the syntax you used in Verilog.
Assume the shift (shown as multiplication by 2i) comes for free (it is just expressing how you

wire up the adder gates).
4. What other logic do you need besides adders for the multiplier? (Hint: what does the

multiplication by B[i] require?) How many LCs will this additional logic require? (per
operation? For the entire 16b by 16b multiplication?)

5. How many of these combinational 16-bit multipliers can you place on the FPGA used on
the iceStick USB FPGA?

6. How many LCs will it require perform a combinational 16-point dot product on 16-bit
inputs (input is 16 16-bit inputs for vector A and 16 16-bit inputs for vector B, output is
one 36-bit output)?

𝑑𝑜𝑡𝑝𝑟𝑜𝑑𝑢𝑐𝑡(𝐴, 𝐵) =/
23

014

𝐴[𝑖] × 𝐵[𝑖]	

Here, A and B are vectors of 16b values (not 16b values as used earlier); A[i] and B[i] each
represent a 16b value, so the multiplication of A[i] by B[i] is a multiplication like you
developed in parts 3—5.

7. What is the minimum size part iCE40 part you could use to implement this design?
a. You may want to refer to the data sheet

http://latticesemi.com/view_document?document_id=49312

HOW TO TURN IN THE LAB

● Upload a PDF document to canvas containing:
o All tables completed
o All code you wrote (.v files)
o Answers to all questions (highlighted in yellow)
o Postlab answers

● Each student must submit an individual lab writeup.

