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  Digital Logic Lab 
In this lab we will do the following: 

1. Investigate basic logic operations (AND, OR, INV) 
2. Learn a bit about FPGAs (Field Programmable Gate Arrays) 
3. Implement an adder on an FPGA 
4. Implement an Accumulator on an FPGA 

 
Background: 

In lecture, we discussed the 3 basic logic operations: AND, OR, NOT (inversion).  We examined 
each operation and learned that these operations can be implemented using a logic gate.  We 
went further to see how we could implement any truth table in terms of these basic logic gates.  
We created a multi-bit adder by “cascading” full adder circuits.   We saw how to store state in 
registers and create state-dependent logic in the form of Finite-State Machines (FSMs). 

We also saw Field-Programmable Gate Arrays—programmable chips that could be configured to 
implement any network of gates and flip-flops. 

In lab today, we’ll see how to program these FPGAs to build logic, arithmetic, and stateful 
functions. 
 
FPGAs (Field Programmable Gate Arrays):  
 
Field-Programmable Gate Arrays contain an array of programmable gates.  

In the particular FPGA we will be using, each programmable gate is called a Logic Cell (LC) and 
can be programmed to implement any gate of 4 inputs. The 4-input LC gate is essentially 
programmed by specifying its truth table. Since it is a 4-input gate, it requires 24=16 bits for its 
programming.  The LC also has provisions to support carry chain logic so that adder bits can be 
implemented with a single LC rather than with two.  Each LC is also associated with an optional 
Flip-Flop (DFF) to hold state.  These gates are arranged in a two-dimensional array, and 
programmable routing allows us to connect the inputs of any gate (LC) to the outputs of any 
other gate (LC) or the pins of the FPGA chip.  Similarly, the programmable routing allows us to 
connect the output pins on the FPGA chip to the outputs of one of the gates. The particular device 
we will be using for this lab has 1280 LCs on it.   

 
While not essential for this lab, you can find the datasheet for the FPGA we will be using: 
http://latticesemi.com/view_document?document_id=49312 
The software we will be using to program the part is open source and can be found: 
http://www.clifford.at/icestorm/ 
Preclass Section 2 will walk you through the installation. 
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Prelab: Part 1 
 
     Submit your answers to this part to the Lab 7 prelab assignment on Canvas before Monday 
lab session.  Course staff will review before or at the beginning of the lab session. 
 

1. Write the truth table for each of the following functions. Note that “Out” is the output 
and “p1” and “p2” are two inputs.  “p3” is a third input. 

a. Out = NOT( AND( p1, NOT( p2 ) ) 
b. Out = OR( AND( p1, p2), NOT( p3 ) ) 

 
2. A Full Adder (FA) is a useful 3-input, 2-output logic function out of which we can 

implement larger addition operations.  The basic function of a full adder is to take in 3 
input bits, count the number of ones, and produce a 2-bit output to represent the sum. 
Mathematically:  2⋅carry + sum = i0+i1+i2 

That is, if we treat the three inputs as 1-bit values taking on 0 or 1, then we can sum 
them up and get a value between 0 and 3.  We represent the result in a 2-bit binary 
number, calling the least significant bit the sum, and the most significant bit the carry. 

Complete the truth table for the Full Adder 
 inputs  outputs  

i0 i1 i2 carry sum 
0 0 0   
0 0 1   
0 1 0   
0 1 1   
1 0 0   
1 0 1   
1 1 0   
1 1 1   

 
 

3. The FA can be expressed in gates.  Write a logical expression in terms of AND, OR, and 
NOT gates for each of the two outputs (sum, carry) for the FA.  You may use gates with 
more than 2 inputs. 

4. Given two FA gates, how would you compose them to perform a 2-bit addition (take in 
two 2-bit values and produce one 3-bit result)?  (Hint: how do we add bits of equal 
significance? What do we do with the carry? Why did we define the FA as having 3 
inputs?) 

5. Given k FA gates, how would you compose them to perform a k-bit addition (take in two 
k-bit values and produce one (k+1)-bit result)? 

6. Explain why we need (k+1) bits to represent the result of a k-bit add. 
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Part 2: Install IceStorm Tools on your laptop 
 
Windows 

1. We will more or less follow the installation instructions found under “Testing iceprog” 
here: https://github.com/FPGAwars/toolchain-icestorm/wiki#testing-iceprog  
They have pictures of the process there, so it will be helpful to follow along with their 
instructions as well. 

2. Go to https://github.com/FPGAwars/toolchain-icestorm/releases/ and download the 
toolchain-icestorm-windows_x86-1.11.1.tar.gz package under v1.11.1. 

3. Install 7-zip if you haven’t got it already. 
4. Right click the downloaded .tar.gz file and click on 7-zip -> Extract Here. This should 

create a .tar file. 
5. Right click on the .tar file and click on 7-zip -> Extract Here again. This should create a 

folder called toolchain-icestorm-windows_x86-1.11.1.  
6. If you look inside, there should be a folder called bin. 
7. Take note of the path to the bin folder. It should be something like 

“D:\Downloads\toolchain-icestorm-windows_x86-1.11.1\bin”. You’ll need it later. To 
copy the path, you can open up bin and click the filepath in the bar at the top. It should 
turn into highlighted text, which you can copy with Ctrl + C. 

8. Set up the necessary drivers for the ICEstick, following the instructions under “Driver 
installation” here: https://github.com/FPGAwars/libftdi-cross-builder/wiki#driver-
installation  

 
MacOS 

1. We will mostly follow the instructions under “Testing in MAC” here: 
https://github.com/FPGAwars/toolchain-icestorm/wiki#testing-in-mac  
They have pictures of the process there, so it will be helpful to follow along with their 
instructions as well. 

2. Go to https://github.com/FPGAwars/toolchain-icestorm/releases/ and download the 
toolchain-icestorm-darwin-1.11.1.tar.gz package under v1.11.1. 

3. Extract the package to obtain a .tar file, then extract it again to obtain a folder 
containing another folder called bin. 

4. Take note of the path to bin. You’ll need it later. You can right click on the folder, press 
the Option key, and select “Copy ‘bin’ as Pathname” to copy the path. 

5. Follow the rest of the instructions on the other page to set up the necessary drivers. 
Make sure to install libftdi instead of libftdi0. 

6. If you have issues, you may also want to check out the instructions here: 
http://www.clifford.at/icestorm/notes_osx.html   
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Part 3: SSH into ENIAC 
 
ENIAC is the name of the server running in SEAS that all engineering students have access to. The S drive 
that you are already familiar with is the home directory of your account on ENIAC. To remotely access 
ENIAC from a personal computer, we will use SSH: Secure Socket Shell. You can read more about SSH 
and its history here: http://docstore.mik.ua/orelly/networking_2ndEd/ssh/ch01_01.htm 
 
SSH is often run from a unix-based command line. An SSH client is included by default on MacOS, Linux, 
and Windows 10 (as of 2018). You can use the following instructions to log into the ENIAC. If you are 
running an older version of Windows, there are instructions for how to install an SSH client below. 

1. Open	a	terminal	window	(make	sure	to	use	PowerShell	on	Windows,	since	some	
commands	won’t	work	in	Command	Prompt)	

2. Type	the	following	command,	replacing	PENNKEY	with	your	PennKey	
ssh PENNKEY@eniac.seas.upenn.edu	

3. If	prompted,	type	‘y’	(or	‘yes’	on	Windows)	to	add	to	known	hosts.	When	prompted,	enter	
your	password	

4. You	should	see	a	welcome	message:	
 

 
  

5. Type	exit	to	logout	
exit 

6. You	can	copy	data	back	and	forth	from	windows	using	scp.	
a. Open	a	console	window	on	your	laptop.	

The	scp command	takes	in	two	space-separated	arguments:	the	source	and	the	
destination. 
Copy	from	eniac:	
scp PENNKEY@eniac.seas.upenn.edu:~ese150/logic/section1.v 
section1.v 
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b. Look	at	the	file	you	downloaded	(use	Ctrl/Cmd	+	C	to	exit):	
more section1.v 

c. Copy	the	final	back	to	your	account	on	eniac:	
scp section1.v PENNKEY@eniac.seas.upenn.edu: 

       Note: there is a colon at the end of the command.  It is important. It is separating the 
machine name (eniac.seas.upenn.edu) from the path, which is empty to denote the top level of your 
personal home directory. 

d. Ssh	back	into	eniac	and	verify	you	copied	the	file	into	your	personal	directory	on	
eniac:	

ls (you should see the filename section1.v printed out) 
more section1.v 

Older versions of Windows 

If your personal computer is running an older version of Windows, there are lots of SSH clients that are 
easy to download and run. A popular one is called PuTTY:  

1. Download	PuTTY	from	their	website:	
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html		
Under	“Package	files”	select	the	“MSI	(‘Windows	Installer’)”	appropriate	for	your	OS	(most	
likely	64	bit).		
This	will	install	all	of	the	PuTTY	utilities,	but	if	you	just	want	what	you	need	for	this	lab,	you	
can	choose	just	putty.exe	and	pscp.exe	in	the	“Alternative	binary	files”	section.	

2. Open	the	putty.exe	file	once	the	download	is	complete.	
3. Enter	the	hostname	in	the	form	PENNKEY@eniac.seas.upenn.edu,	replacing	it	with	your	

actual	PennKey.	
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4. Select	“Open.”	If	prompted,	select	‘Yes’	on	the	popup,	and	then	enter	your	password.	
5. You	should	see	the	welcome	message:	

 
 
Now you have remote access to the ENIAC computer. 

6. Type	exit	to	logout:	
exit 

7. To	copy	files	with	scp,	you	can	follow	the	steps	in	the	previous	section	(step	6),	but	use	the	
pscp	command	instead	of	scp.	
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Lab Procedure: 
 
Lab – Section 1: Working with a USB FPGA 
● In this section, you’ll learn how to compile simple combinational logic in Verilog for an FPGA 
 
1. Your Lab 7 kit should include an iceStick USB FPGA, PMOD switches (2 kinds),  PMOD Y-

cable, and a USB Extension cable.  
2. In a terminal window, create a directory for your work for this lab by entering the following 

commands into the terminal. If you are on a Windows computer, make sure to use 
PowerShell instead of cmd. 

i. mkdir ese150logic 
ii. cd ese150logic 

The mkdir (make directory) command will create the directory/folder. The cd 
command (change directory) will change into the new directory, like opening up a 
folder and looking inside. 

3. Copy the files you will need for this lab into the directory you just created: 
scp PENNKEY@eniac.seas.upenn.edu:~ese150/logic/* .  
 
Note that the above command ends with a space and a dot (.);  
The cp (copy) command is taking in two arguments, separated by spaces: the source 
and the destination. 
In Linux, * refers to “everything”, and . refers to the current directory 
(ese150logic). So, ~ese150/logic/* is selecting everything in the 
~ese150/logic directory, and . is selecting your current folder. cp then copies 
~ese150/logic/* to ., so there should be some new files in ese150logic. You 
can check this by entering the command ls to list the contents of the current directory. 

4. If you’re on a Mac/Linux laptop, sure the shell script is executable. chmod is short for 
“change mode”, and we’re adding the ability to execute (+x) the file to build.sh. 

i. chmod +x build.sh	
5. Make sure to change the IceStorm installation location in build.sh by opening it up 

with a text editor and changing the path in the quotes on line 11 to wherever your IceStorm 
installation is located. If you copied it after installing, paste it here to replace the text in the 
quotes. 

i. If you are on Windows, change all backslashes “\” to forward slashes “/”. 
6. Connect PMOD Switches up to the FPGA. 

- We will be using the following iceStick Lattice FPGA: 
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- The following parts will be needed for this lab (from top to bottom): 

o ice Stick FPGA 
o Pmod extension cable 
o Male to male headers 
o Pmod  switches 
o Pmod buttons 

 

 
- As a side note, Pmod means “peripheral module” and refers to a standard of 

connections by Digilent, the company that makes the buttons and switches. 
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i. Connect the male to male headers to the end of the PMOD cable with 12 holes: 

 
 
 

ii. Connect the Pmod buttons to the end of the Pmod extension cable that has 6 holes 
and is labeled A, and the Pmod switches to the other end. The buttons and switches 
should look as follows: 

 
 
 

iii. Connect the Pmod extension cable with the male to male headers to the FPGA, such 
that the side labeled A faces outward: 

 



ESE 150 – Lab 07: Digital Logic  
 

ESE 150 – Lab 7  Page 10 of 22 
 

 
iv. Connect the USB extension cable to the FPGA. It should now look as follows: 

 
 
 

v. Lastly, connect the FPGA to the Linux computer (the smaller of the two Dell 
machines) at your lab station. Now, some of the LEDs on your FPGA may turn on, if 
the FPGA was used and programmed in the past: 

  
 

 
- There are five LEDs on the FPGA, labeled D1, D2, D3, D4, and D5: 
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7. Review the Verilog file section1.v to see how it encodes combinational logic.  
The first section looks like the header signature on a C or Java function and serves a similar 
role.  Here, it defines the input and output signals.  This is the top-level for our design on 
the FPGA.  It is defining the Inputs and Outputs for the entire FPGA.  We will use this same 
Input/Output configuration for the entire lab.  The key outputs are the LEDs, and the key 
inputs are on the PMOD connector, which you wired in the previous step.  Also included is a 
clock signal (clk), which we will not use for this part of the lab. 

`default_nettype none 
module demo( 
    input      clk, 
    output     LED1, 
    output     LED2, 
    output     LED3, 
    output     LED4, 
    output     LED5, 
    input      PMOD1, // input p1 
    input      PMOD2, // input p2 
    input      PMOD3, // input p3 
    input      PMOD4,  // input p4 
    input      PMOD7, // will use for section 2 
    input      PMOD8, //  
    input      PMOD9, //  
    input      PMOD10  // 
    ); 

 
Following this we declare some internal variables.  These are similar to local variable 
declarations in C and Java.  Here, the only type is “wire” meaning a combinational signal.   

// Alias inputs 
   wire   p1; 
   wire   p2; 
   wire   p3; 
   wire   p4; 
 
// Alias outputs 
   wire   o1; 
   wire   o2; 
   wire   o3; 
   wire   o4; 
   wire   o5; 
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Following this, we have some assignments.  These are simply giving more friendly names to 
signals, in this case the inputs, for use with this piece of logic. 

   assign p1=PMOD1; 
   assign p2=PMOD2; 
   assign p3=PMOD3; 
   assign p4=PMOD4; 

Note that p1=PMOD1 is physically BTN0 on the Button Module.  Similarly, p4=PMOD4 is 
BTN3.  We have one more assignment which serves to directly connect one of the inputs to 
a signal we will connect to the output: 

          assign o5=p4; // output directly controls                                     

We place the actual logic in the next section.  The <= symbol is used for logic assignment (it 
is not a comparison operation).  This logic demonstrates how Verilog expresses and (&), or 
(|), and invert (!) Boolean operators we introduced in the introduction. 
     always  // combinational assignment -- always computing 
     begin 
        // <= is used for logic assignment 
       o1<=p1 & p2;   // and together two inputs 
       o2<=p1 | p2;   // or together two inputs 
       o3<=!(p1 & !p2); // use a not ! 
       o4<=(p1 & p2) | !p3; // compound logic expression 
     end 

 
In the final section, we have more assignments to connect the logical outputs computed by 
the logical expression to the module outputs. 
// Wire up the lights 
     assign LED1 = o1; 
     assign LED2 = o2; 
     assign LED3 = o3; 
     assign LED4 = o4;  
     assign LED5 = o5;  

 
8. Compile and download the section1.v Verilog file to the FPGA: 

i. Working in the same terminal window and directory where you just copied the files 
run the command. This executes the build script with section1 as an argument. 

./build.sh section1 
ii. You will see the output of the compilation and download steps scroll by.  Then the 

LEDs will glow dim then return to a state with some on and others off.  At this point, 
the FPGA should be programmed and ready for use. 
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9. Review the output of the compilation process and note the resources used. In particular, 
look at the section1.log file that was created during the build process.  You can open 
this in a text editor or use a terminal command: 
          more section1.log 
 
Look for the following section: 

After packing: 
IOs          14 / 96 
GBs          0 / 8 
  GB_IOs     0 / 8 
LCs          4 / 1280 
  DFF        0 
  CARRY      0 
  CARRY, DFF 0 
  DFF PASS   0 
  CARRY PASS 0 
BRAMs        0 / 16 
WARMBOOTs    0 / 1 
PLLs         0 / 1 

 
This says we are using 4 LCs (Logic Cells) out of 1280 and 14 IOs out of 96.  The 4 LCs are for 
each of the 4 expressions we compute.  None of them have more than 4 inputs, so they can 
each fit into a single LC.  

 
10. Use the input switches and LEDs to verify the truth table for the basic logic functions and 

the simple combinational logic in the Verilog file.  Record the truth table for o4 and include 
with your lab report. 
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Lab – Section 2.1: Writing your own combinational logic 
● In this section you’ll learn how to write simple combinational logic in Verilog and implement 

your FA and multi-bit adder from the preclass. 
 
1. Copy section1.v to section2fa.v: 

    cp section1.v section2fa.v 

2. Edit section2fa.v and change the Verilog logic equations in section2fa.v to implement your 
full adder from Prelab Question 3.  

a. Declare wire variables for i0, i1, i2 and assign the inputs i0, i1, i2 to the inputs 
PMOD1, PMOD2, and PMOD3. 

b. Write your logic equations for sum and carry inside the always block in place of the 
logic that was in Section 1. 

c. Connect the output sum to LED1, output carry to LED2. 
3. Compile and download your section2fa.v. 

./build.sh section2fa  
4. Use the inputs and LEDs to verify the truth table for your full adder in section2fa.v. 

a. Debug your logic as necessary. 
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Lab – Section 2.2: Building a 4-Bit Adder 
1. Edit section2add4.v. 
2. Revise the Verilog logic equations in section2add4.v to produce a 4-bit adder: 

a. We have setup the inputs and outputs for you.  This shows that you can declare 
multi-bit variables in Verilog similar to arrays in C or Java.  Here, a and b are each 4-
bit values.  c and o are 5-bit values.   

// Alias inputs 
wire  [3:0] a; 
wire  [3:0] b; 
wire  [4:0] c; // you will likely use 
 
// Alias outputs 
wire   [4:0] o; 

 
 

 
 
 
We assigned a and b to the PMOD inputs for you.  
// assign inputs to signals with meaningful names 
   assign a[0]=PMOD1; 
   assign a[1]=PMOD2; 
   assign a[2]=PMOD3; 
   assign a[3]=PMOD4; 
 
   assign b[0]=PMOD7; 
   assign b[1]=PMOD8; 
   assign b[2]=PMOD9; 
   assign b[3]=PMOD10; 

Note that we can use the array notation to refer to individual bits in the a and b variables. 
 
Also, note that b[0]=PMOD7 is physically SW1 on the Digilent Switch Module.  Likewise, 
b[3]=PMOD10 is SW4. 
 

b. Create your adder by replicating the full adder logic equations you have already 
written for each set of inputs and connecting the carry out (c[i]) between the bits of 
the full adders.  Treat the carry input to your circuit (c[0]) as 0. 

 
3. Compile and download section2add4.v to your FPGA. 
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4. Consult the output of the compilation process and note how many LCs your 4-bit adder 

uses. 
 
5. Use the inputs and LEDs to verify the correct function of your 4-bit adder: 

a. If we were to exhaustively test your adder, how many test cases (sets of input 
values) would there be?  (that is, how large would the truth table be?) 

b. Test at least the following cases: 0+1, 0+2, 0+4, 0+8, 1+0, 2+0, 4+0, 8+0, 1+15, 2+15, 
4+15, 8+15, 15+15, 5+2, 2+5, 7+1, 1+7. 

c. Test 4 more “random” cases. 
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Lab – Section 3: Working with Verilog Arithmetic 
● In this section, you’ll learn how to write simple arithmetic in Verilog 

 
Arithmetic is common in Verilog, so you can also write arithmetic expressions directly. 
 

1. Review the Verilog file section3add4.v to see how it encodes a simple addition. 
Here, we simply tell it to perform addition on the multi-bit variables using the multi-bit addition (+) 

operator.  The rest of the code in section3add.v is the same as the setup you saw for 
section2add.v. 

	
always  // combinational assignment -- always computing 
   begin //  
     o<=a+b;  
     end 

	
2. Compile and download the section3add4.v Verilog file to the FPGA: 

a. Note the inputs are the same as the end of Section 2. 
b. Record resources required (LCs and CARRY) and explain them.  Note that it now uses 

CARRY logic resources.   
c. Use the inputs and LEDs to verify the correct function of this 4b adder.  Perform the 

same tests as you did at the end of Section 2. 
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Lab – Section 4: Working with State in Verilog 
● In this section, you’ll learn how to maintain state in Verilog. You won’t have to submit 

anything for this section, but it should give you the information you need to complete 
Section 5. 
 

In Verilog, we can write logic that includes state in registers. 
 

1. Review the Verilog file section4fwd.v to see how it encodes a simple clockwise rotation of 
the LEDs.  

We now use the reg type instead of wire to denote that these variables are registers (flip flops).  
They will hold state and can be controlled to only change their values at clock edges.  We 
declare these as multi-bit values. 

// Manage 12MHz clock 
   reg [24:0] counter;  
   reg [1:0] dec_cntr; 

 
The clock on the iceStick board runs at 12MHz.  Unfortunately, if the LEDs changed at 12MHz, we 

wouldn’t be able to track them.  So, we start by slowing the rate of advance down to 0.5 
seconds.  We do this by counting to 6 million between each of the sequential logic 
operations.  Each time the clock counter reaches 6 million, we reset it and increment the 
counter for the LEDs.  Since this is sequential logic, we only want the logic to operate in 
response to a clock edge.  We specify that by telling the always block to operate on the 
positive clock edge, when the clock goes from low to high. 

// The 12MHz clock is too fast 
// ...count to 6 million to divide it down to a half second clock 
 always@(posedge clk) 
   begin 
      counter <= counter + 1; 
        if (counter == 6000000) 
          begin 
     counter<=0; // reset counter 
     dec_cntr <= dec_cntr + 1; // count half seconds 
         end 
   end  
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We use combinational logic to select LEDs based on values of the dec_cntr: 
// Make the lights blink -- each light activated on a 
different value of 2b half-second counter 
   assign LED1 = (dec_cntr == 0) ; 
   assign LED2 = (dec_cntr == 1) ; 
   assign LED3 = (dec_cntr == 2) ; 
   assign LED4 = (dec_cntr == 3) ; 

 
3. Compile and download section4fwd.v 

a. Watch how lights behave and relate to logic. 
4. There’s nothing to submit for this section, but you’ll need to be able to understand how to 

use registers for Section 5. Hopefully, this is a useful example. 
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Lab – Section 5: Implement an accumulator in Verilog 
● In this section you’ll implement an accumulator in Verilog 

 
An accumulator is a unit that keeps a sum of all the inputs that it has been given since being reset.  

(Note that the large piece of ENIAC in the first floor ENIAC Suite is labeled “Accumulator 18”.)  
Since it remembers the previous sum, it must maintain state in registers. 

 
We will build an 8b unsigned accumulator with 4b unsigned inputs.  That is, the accumulator can store 

values between 0 and 28-1=255 and take as inputs values between 0 and 24-1=15.  Since we 
only have 5 LED outputs on our iceStick USB FPGA, we will need to share them between the low 
4b of the accumulator value and the top 4b of the accumulator value. 

 
Our complete set of inputs will be: 

● 4b of input – use the 4 on-off switches (Digilent switch module, PMOD7 through PMOD10, 
SW1 through SW4); we call these in[3:0]. 

● Reset – to set the accumulator value back to 0; use a momentary switch (Button Module, 
PMOD1, BTN0), which we will call p_reset. 

● Read-input – to take in the current value of the 4b input and add it to the accumulator 
value; use a momentary switch (Button Module, PMOD2, BTN1), which we will call p_input. 

● Show high nibble – to tell the FPGA to display the top bits (bits 7—4 of the 8b accumulator 
value) on the LEDs.  When this is set low, the LEDs should show the bottom bits (bits 3—0) ; 
use a momentary switch (Button Module, PMOD3, BTN2), which we will call p_high. 

 
One challenge is to make sure that each p_input button press results in only a single addition of 
the input in[3:0] to the accumulator.  To do that, we want to demand that we only take a valid 
keypress if p_input was previously 0.  We use the previous_p_input register to hold the 
previous value of p_input. 

We have setup the input and outputs for you in section5start.v.  This includes the counter from 
section4fwd.v so that keypresses are considered only every 0.1 seconds. 

HINT: If you want to set the output values (such as LED1) within an “always” block, don’t write 
“assign” before the output name. For example, instead of writing “assign LED1 = accum[0]”, 
simply write “LED1 = accum[0]”. 
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1. Copy section5start.v to section5acc.v 
2. Revise section5acc.v to behave as an accumulator as described above. 

a. Add your accumulator logic along with the counter reset as noted. 
b. Add your output select logic in the LED output section at the end as noted. 

3. Test your design on a number of summation sequences. 
a. Reset the accumulator and add a 1 for 20 times; use the show high nibble to 

check full counter value. 
b. Reset the accumulator and add a 15 for 13 times.  What result should the 

accumulator hold?  Use the show high nibble to check full counter value. 
c. Reset the accumulator and add the integers from 1 to 6. What result should the 

accumulator hold?  Use the show high nibble to check full counter value. 
d. Create a sequence of 6 random integers between 0 and 15. Note their sum.  

Reset the accumulator and add the integers. Use the show high nibble to check 
full counter value. 

4. Record the LC resources needed by your design. 
5. Show your accumulator to your TA for your exit ticket. 

a. TA will direct you to demonstrate a test of a different sequence of numbers. 
b. TA will review Verilog code. 
c. TA will ask questions about the design. 
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Postlab 
1. How many LCs will be required for a two input, 16-bit adder (adds together two 16b 

inputs to produce one 17b output)? 
2. Based on LC usage, how many 16-bit adders could you put on the FPGA used on the 

iceStick? (recall the FPGA has 1280 LCs) 
3. How many 16-bit adders do you need to implement a combinational 16-bit multiplier 

(multiplies two 16b values to produce one 32b output)? 
Recall that you can multiply two numbers by summing shifted copies of the multiplicand.  For 

16b numbers: 

𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑦(𝐴, 𝐵) = /
0123

014

𝐵[𝑖] × 2𝑖 × 𝐴	

B[i] represents the ith bit of B, similar to the syntax you used in Verilog. 
Assume the shift (shown as multiplication by 2i) comes for free (it is just expressing how you 

wire up the adder gates). 
4. What other logic do you need besides adders for the multiplier? (Hint: what does the 

multiplication by B[i] require?)  How many LCs will this additional logic require? (per 
operation? For the entire 16b by 16b multiplication?) 

5. How many of these combinational 16-bit multipliers can you place on the FPGA used on 
the iceStick USB FPGA? 

6. How many LCs will it require perform a combinational 16-point dot product on 16-bit 
inputs (input is 16 16-bit inputs for vector A and 16 16-bit inputs for vector B, output is 
one 36-bit output)? 

𝑑𝑜𝑡𝑝𝑟𝑜𝑑𝑢𝑐𝑡(𝐴, 𝐵) =/
23

014

𝐴[𝑖] × 𝐵[𝑖]	

Here, A and B are vectors of 16b values (not 16b values as used earlier); A[i] and B[i] each 
represent a 16b value, so the multiplication of A[i] by B[i] is a multiplication like you 
developed in parts 3—5.  

7. What is the minimum size part iCE40 part you could use to implement this design? 
a. You may want to refer to the data sheet 

http://latticesemi.com/view_document?document_id=49312 
 
HOW TO TURN IN THE LAB 
 

● Upload a PDF document to canvas containing: 
o All tables completed 
o All code you wrote (.v files) 
o Answers to all questions (highlighted in yellow) 
o Postlab answers 

● Each student must submit an individual lab writeup. 


