
ESE 150 – Lab 04: The Discrete Fourier Transform (DFT)

ESE 150 – Lab 4 Page 1 of 17

LAB 04

In this lab we will do the following:

1. Use Matlab to perform the Fourier Transform on sampled data in the time domain, converting it
to the frequency domain

2. Add two sine waves together of different frequency using a summing OpAmp circuit
3. Use Arduino A2D to sample and quantize output of summing OpAmp

Background:

In lecture we studied the Fourier Series and the Fourier Transform. The Fourier series is a representation
of a periodic function using a summation of sines and cosines. It offers a way to represent a time-based
periodic signal in the frequency domain. The Fourier Transform is an extension of the Fourier Series that
allows us to represent non-periodic functions using a summation of complex sinusoids. It allows us to
take signals in the “time domain” and see their breakdown or “frequency domain” components. The
Discrete Fourier Transform (DFT) is a variation of the Fourier Transform that applies when our function is
discrete. This version of the Fourier Transform becomes very useful in computer engineering, where we
have “digitized” incoming analog signals, taking them from a continuous form to a discrete form. In our
case, we’ve sampled “music” using our Arduino A2Ds and as a result, we have a set of discrete sampled
data. In this lab, we’ll apply the DFT to our discrete sampled data to transform it from the time domain
to the frequency domain and look more carefully at its frequency components.

In previous labs we’ve only sampled simple waveforms: sine wave, square wave, triangle wave. We
could “convert” them to the frequency domain without doing the Fourier transform, they simply have 1
frequency, so only 1 sine wave could represent them. We need to create a more interesting waveform.
So we’ll begin the lab by using two function generators, each producing a separate sine-wave. Then we’ll
use a special adding/summing circuit to combine them together electronically. Next we’ll sample this
newly sampled data, import it into Matlab and apply the discrete Fourier Transform to it, so we can see
the frequency components of our sampled signal, as opposed to its time-domain only representation.

ESE 150 – Lab 04: The Discrete Fourier Transform (DFT)

ESE 150 – Lab 4 Page 2 of 17

Prelab: Applying the Discrete Fourier Transform in Matlab
● In this section, we’ll take the data you’ve collected in previous labs, convert it from the time domain

to the frequency domain using the DFT
● We’ll use a built-in function in Matlab to help us apply the DFT, called FFT()

Recall from lecture, the formula for DFT:

1. If you take ESE224, you will implement this formula in MATLAB by hand. However, MATLAB provides

an implementation of this formula, so you don’t have to worry about it for this class! (This is one of
the reasons why many people use MATLAB). The implementation is called a FFT, or Fast Fourier
Transform, because of the efficient algorithm for computation. You can read about the FFT in
MATLAB here: http://www.mathworks.com/help/matlab/ref/fft.html

2. The basic idea is that it takes in N samples from the time domain and determines the sine/cosine
components at various frequencies: k

3. Begin by importing your sine wave data into Matlab as you did in Lab 3; create a 800x1 matrix called:

sine_sampled_time [You don’t need to sample this again; use the 5000Hz sampled data you captured
from Lab 1.]

4. Using a conversion factor, convert the samples to their voltage values.

5. Plot the data against the appropriate time axis (you must turn in this plot), label all axis (voltage vs.

time and the units, and title) – zoom in so we can see 4 cycles.

6. Because you applied an “offset” to the sine-wave on the function generator, before you sampled it,

your plot ranges from 0-2V. Subtract the “offset” from your sampled data to show it going between
–1 V to + 1 V.

7. Now, re-plot the data against the appropriate time axis (you must turn in this plot too), label all axis

(voltage vs. time and the units, and title) - zoom in so we can see 4 cycles.

ESE 150 – Lab 04: The Discrete Fourier Transform (DFT)

ESE 150 – Lab 4 Page 3 of 17

8. Now, convert the sine wave from the time domain to the frequency domain using Matlab’s built in
DFT by typing the following (Make the sine data you are converting is in Volts!)

sine_sampled_frequency = fft(sine_sampled_time)

 What you will notice is 800 complex #’s are produced (see the real # + imaginary #’s).
Why complex #’s? Recall Euler’s identity, where eiθ=cosθ+i sinθ .

9. Now, let’s prepare to plot the converted data in the frequency domain. Type the following:

samp_period = 0.0002+0.000125 % sampling period + analogRead()’s delay
samp_freq = 1/samp_period % sampling frequency
samples = 800 % # of samples

sine_sampled_frequency = abs(sine_sampled_frequency / samples)

● Notice in the above code, that our sampling period is not just 200uS; there is a delay
associated with analogRead(). So our sampling frequency is actually a little less than 5000 Hz.

● What is that actual sampling frequency when you include this additional delay?
● Also, notice the last line; it takes the “absolute” value of our frequency data. When one takes

the absolute value of a complex #, we get its magnitude (like polar magnitude).
10. Let’s plot the data…

a. Recall, there are 800 elements in the sine_sampled_frequency matrix. These represent the
SPIKES or magnitudes of the sine-waves at various frequencies.

b. But what are the x-axis values? They will now be frequency!
c. What is our range? Let’s say 0 Hz to start with, but what about the upper bound? Use the

actual sampling frequency you determined in Step 9.
d. Create a vector called: freqs = (0:799).
e. Scale it so that the highest frequency is “samp_freq” (again, determined in Step 9).
f. Plot your data by using plot(freqs, sine_sampled_frequency)

11. Interpreting the plot…
a. You will see two spikes, one at approximately 300 Hz, and one ~2800Hz. Why is the high one

false? [Hint: What’s your actual sampling frequency from Step 9?]
b. Change your “sine_sampled_frequency” matrix and cut off false frequencies.

i. Create a shorter vector that only includes the true frequencies based on your sampling
rate.

c. Also, notice the amplitude is ½ of what it should be? Double the amplitudes in the
sine_sampled_frequency matrix; this is a byproduct of the absolute value function.

d. Lastly, replot your data…does it line up with what you expected?
i. You could adjust that value of “+0.000125” to figure out analogRead()’s exact delay.

e. Make sure there is a title and axis labels with units.

ESE 150 – Lab 04: The Discrete Fourier Transform (DFT)

ESE 150 – Lab 4 Page 4 of 17

12. Make your own Matlab FUNCTIONs plot_time() and plot_dft() that takes in “800 time domain
samples” and plots them in the time domain (subtracting the offset voltage offset appropriately) and
in the frequency domain, respectively.

a. This is the Matlab code that must be turned in for this section.
b. You will also need to use this function in lab.
c. Your two functions should take in arguments as specified below:

i. plot_time(time domain samples, figure number, start sample, end sample)

Specifically, start sample and end sample let you plot within a time range, so that you
don’t have to zoom in manually as you did in Step 5. But you may need to do some
calculations according to the sampling frequency to pick the correct start sample and
end sample with which to call plot_time.

ii. plot_dft(time domain samples, figure number, sampling frequency)

This function should generate the frequency domain plot.

 Note: figure number should be used as “figure(figure number)” when you open up a
figure window. Your functions should work for any size time domain samples vector, not just 800. Use
the MATLAB length function to determine the number of samples in the input vector.

13. Perform a dot product in MATLAB to extract specific frequencies.
While we used the FFT in MATLAB above, it is effectively computing the dot product between each of
the frequencies and the sampled data. To see this, do the following:

a. Create a vector that contains the time-sample coefficients for a 300 Hz sine sampled at the
sample frequencies identified in Step 9 (possibly refined in Step 11d.i).
 i. Use your equation developed from Lab 2 postlab to create this vector in Matlab. But
make sure to leave it in “voltage” with offset 0 and 800 data points.

ii. To do this, first create a vector t1 = (0:799).
iii. Then, create a t2 by scaling this vector by the sample period you calculated in step 9

above.
iv. To apply a function to the elements of t2, you can perform an operation like 𝑦	 =

	𝑠𝑖𝑛(5	 ∗ 𝑡2).	This gives you y, the vector with time-sample coefficients.

● Try this out with the function given: 𝑦	 = 	𝑠𝑖𝑛(5	 ∗ 𝑡2)
● Now replace the arguments to sine with the appropriate ones to describe a

300Hz sine wave.
b. Perform a dot product between that vector and the sine_sampled_time vector.

i. To perform dot product of two vectors v1 and v2, use dot(v1, v2).
ii. What result do you get?

 [Note: range can be high – properly this should be normalized by a factor of (2/N),
where N is the number of samples.]

c. Repeat a and b for a 300Hz cosine.
d. Repeat a and b for a 200Hz sine and cosine.

ESE 150 – Lab 04: The Discrete Fourier Transform (DFT)

ESE 150 – Lab 4 Page 5 of 17

e. Repeat a and b for a 400Hz sine and cosine.
f. Report all results and relate to the input signal and FFT plot. Do you see a correlation

between the magnitude of each of your results and the frequency of the sine wave?

ESE 150 – Lab 04: The Discrete Fourier Transform (DFT)

ESE 150 – Lab 4 Page 6 of 17

Lab Procedure:

Lab – Section 1: Adding two sine waves together on the scope
● In this section we’ll use two function generators to produce two sine waves of different frequencies
● We’ll view the sine waves on the oscilloscope

1. We will set up the function generator we used in previous labs:

a. Select a 300Hz sine wave with 4Vpp and 2V offset.
b. Set the output to high-Z.
c. Turn on the output, attach a BNC to BNC cable, and plug it into Channel 1 on the oscilloscope.

2. For the second wave, we will use the OLD looking function generator on your lab station, called
“Hewlett Packard 33120A”.

a. Turn the function generator on.
b. To set high z:

i. Enter the menu: shift, then Enter buttons
ii. Use the right arrow to navigate to D: SYS MENU.

iii. Select by hitting the down button, then hit the down button again on “Out Term”.
iv. Use the left arrow to select high z, then press Enter.

c. Set the generator to a 600Hz sine wave with 2Vpp and 1V offset.
i. Press the buttons in the bottom left corresponding to wave parameters, and use the

arrows or dial to change the number.
d. The output should be automatically on. Attach a BNC to BNC cable, and plug it into Channel 2

on the oscilloscope.
3. Turn on the oscilloscope and view your waves!

a. Adjust the scaling (try pressing “autoscale”) so that you see the two waves.
b. Save this image using Excel.

4. Now we will use the oscilloscope to visualize the sum of these waves!
a. On the right side of the menu, press the Math button.
b. Select the + operator and add Source 1 and Source 2 on the oscilloscope screen.
c. Manually rescale the three displayed waves, and take a screenshot.

5. Keep your function generators on for the next part of the lab!

ESE 150 – Lab 04: The Discrete Fourier Transform (DFT)

ESE 150 – Lab 4 Page 7 of 17

Lab – Section 2: Adding two sine waves together with a circuit

● In this section, you’ll build a “summing amplifier” circuit to add the two sine waves together
● Finally, you’ll sample the resulting “summed” sine wave using your A2D

1. Obtain an LM741 OpAmp Circuit from the equipment supply (or your TA).

a. Also obtain 4 resistors of size: 1 kΩ
Note: For more information on LM741 OpAmp please read the Appendix (Optional).
2. On a breadboard, attach the OpAmp circuit across a divet with the indentation facing upwards (pay

attention to orientation). Attach the resistors to the OpAmp as seen in the circuit diagram below. Use
the LM741 diagram to match the pins to the op amp inputs and outputs. Consult the photo below to
make sure the resistors are set up correctly.

a. Make sure the orientation of your OpAmp chip is correct!
b. Make sure that the function generator ends of R1 and R2 are not connected to the same row

on the breadboard! These will be connected to different inputs.
c. Don’t worry about wires yet, we’ll do that in the next step!

ESE 150 – Lab 04: The Discrete Fourier Transform (DFT)

ESE 150 – Lab 4 Page 8 of 17

3. Now we must provider “POWER” to the OpAmp. We’ll need to use the power supply on the lab
bench. Turn it on and set the 25+ to 12V output, and set the 25- to -12V output.

a. Turn on the power supply and output.
i. Set the 25+ output to 12V, and the 25- output to -12V.

b. Connect the power supply to your circuit.
i. Use banana grabber cables to connect the 25+ output to a wire, and plug it into the V+

on your op amp (see circuit diagram above).
ii. Connect the 25- output to V- on the OpAmp.

iii. You should have the 25+ going into where the red cable is the photo below, and the
25- where the orange cable is in the photo below. The RED cable is on the left in the
diagram.

iv. Attach a wire to the black “COM” output on the power supply, and connect it to the

“blue” column of your breadboard (where the black wires are displayed below).

4. Next, we will attach the function generator inputs:

a. Replace the BNC to BNC connections from the last section with a BNC to grabber cable on
both function generators.

b. Attach the black grabbers to the ground column (where the black wires are displayed in the
image above). Make sure this goes in before the next step.

c. Attach each of the red grabbers to one of the input resistors by placing a wire in the same row
as the resistor (where the green wires are in the below reference image). It does not matter
which output goes to which resistor!

ESE 150 – Lab 04: The Discrete Fourier Transform (DFT)

ESE 150 – Lab 4 Page 9 of 17

5. Let’s check our output on the oscilloscope:

a. Remove the BNC cables from the previous section.
b. Attach a BNC to grabber table to channel 1, and attach the grabber to the output of your

summing circuit (where the yellow wire is in the image above).
c. Hopefully your circuit has successfully added two voltages together! (Be proud -- usually it

takes more than a month of a circuits class (ESE 215) to build a circuit like this!)
d. Adjust the scale if necessary and see your wave! Ask a TA if you are unsure that it is correct

6. Finally, you will explore the idea of “phase.” In class, we talked a lot about a signal’s frequency, and
the idea of a frequency domain. However, recall that the formula for an arbitrary wave includes a
Phase term.

a. On the Agilent function generator, change the phase parameter, and see how the shape of

the wave depends partially on phase
7. Lastly, we will listen to the output here to see that the sound does not depend on phase.

a. Set the offset of both function generators to 0.
b. Connect the output from the op amp (pin 6) to one side of the audio jack shown below.

Connect the center pin to ground.

ESE 150 – Lab 04: The Discrete Fourier Transform (DFT)

ESE 150 – Lab 4 Page 10 of 17

c. Now get an audio cable from a TA and connect your circuit to the speakers above your lab

station (use the left input). Turn on the speakers.
d. Now change the phase and check the sound each time. Make a note of your observation.

i. Since we’re using speakers here, everyone in lab will hear it.
ii. If several groups are trying to do this at the same time, it may be hard to hear.

iii. So, please keep this experiment short and turn off your speakers between tests.
iv. Groups tend to work at different rates. With a bit of care and courtesy, we’re hoping

this will work out smoothly.
v. In the past we tried this with headphones, but the results varied from headphone-to-

headphone; we suspect our simple circuit isn’t robust enough to drive some
headphones, leading to distortions in the waveform.

ESE 150 – Lab 04: The Discrete Fourier Transform (DFT)

ESE 150 – Lab 4 Page 11 of 17

Lab – Section 3: Capturing, Importing to MATLAB, and Plotting in the Time Domain

● In this section you’ll use your A2D to capture the output of the summing amplifier
● Afterwards, you’ll import the data into MATLAB

1. Use your Arduino to sample the “mixed” 300 Hz + 600 Hz sinusoid (see Lab 1 for help!)

a. Take the output from the output of your summing amplifier. (You may want to disconnect the
speaker first)

b. Sample at the same rate as prelab (remember to account for the impact of analogRead()
delay).

2. Import the 800 samples into Matlab:
a. Use your Matlab functions: plot_time() and plot_dft() to plot the signal in time and in

frequency.
b. Properly label and turn in the plots.

3. Show your time and frequency plots to your TA and answer a few questions. This is the Lab Exit
Check-off.

4. Make sure both partners have access to the data collected before leaving lab. We recommend
setting up a shared folder on Google drive.

5. Time permitting: experiment with other frequency pairs.
a. What waveforms can you create? Make sure you set your sample rates to avoid aliasing.
b. Deliberately set one of the frequencies so that aliasing occurs. Note the alias frequency that

shows up in your frequency plot.
6. Cleanup your lab station, leaving everything as you found it when you arrived.

ESE 150 – Lab 04: The Discrete Fourier Transform (DFT)

ESE 150 – Lab 4 Page 12 of 17

Postlab

First, download the three “unknown/mystery” signals from the link on the syllabus and import the 3
different sets of samples into Matlab.

1. Create plots of the provided data in the time domain, just like you have done with your own sampled

data in labs:
● Note, these samples are already scaled to voltage values
● the sampling period for this data was 0.00002s
● please plot only the first 200 samples
● make sure to label axes and title your plot

2. Create plots of the provided data in the frequency domain. Use the MATLAB code provided in the lab,

with a few changes:
● change the sampling period to 0.00002s
● the length of the provided data is no longer 800. If you correctly coded your plot_time() and

plot_dft() functions, they should work for the longer data. If not, this is a chance to test and refine
them so that they do.

● change the title for each mystery save file.

3. Write down the functions that sum up to make each mystery wave. They will all be in the form:
 Asin(2πft)
 You should find A and f from the plots created in step two.
Report the A and f values for the functions that make up each of the mystery waves.

Turn in all plots created and your resulting functions.

ESE 150 – Lab 04: The Discrete Fourier Transform (DFT)

ESE 150 – Lab 4 Page 13 of 17

HOW TO TURN IN THE LAB

● Upload a PDF document to canvas containing:
o All Plots with axis and labels and titles!
o All Matlab code – just the functions you created in prelab are sufficient
o Saved oscilloscope screenshots
o Answers to all questions in the lab
o Plots and answers to postlab

ESE 150 – Lab 04: The Discrete Fourier Transform (DFT)

ESE 150 – Lab 4 Page 14 of 17

APPENDIX

Op-amps :

An Operational Amplifier, or op-amp for short, is fundamentally a voltage amplifying device designed to
be used with external feedback components such as resistors and capacitors between its output and
input terminals. These feedback components determine the resulting function or “operation” of the
amplifier and by virtue of the different feedback configurations whether resistive, capacitive or both, the
amplifier can perform a variety of different operations, giving rise to its name of “Operational Amplifier”.
Hence, op-amps are used to perform mathematical operations such as addition, subtraction, integration
and differentiation

An Operational Amplifier is basically a three-terminal device which consists of two high impedance
inputs, one called the Inverting Input, marked with a negative or “minus” sign, (–) and the other one
called the Non-inverting Input, marked with a positive or “plus” sign (+).

The third terminal represents the operational amplifiers output port which can both sink and source
either a voltage or a current. In a linear operational amplifier, the output signal is the amplification
factor, known as the amplifiers gain (A) multiplied by the value of the input signal and depending on the
nature of these input and output signals, there can be four different classifications of operational
amplifier gain.

● Voltage – Voltage “in” and Voltage “out”

● Current – Current “in” and Current “out”

● Transconductance – Voltage “in” and Current “out”

● Transresistance – Current “in” and Voltage “out”

In this lab we are dealing with voltage amplifiers, that is, Vin and Vout.

ESE 150 – Lab 04: The Discrete Fourier Transform (DFT)

ESE 150 – Lab 4 Page 15 of 17

LM741 Op-amp :

The LM741 devices are general-purpose operational amplifiers which feature improved performance. It
is intended for a wide range of analog applications. The high gain and wide range of operating voltage
provide superior performance in integrator, summing amplifier, and general feedback applications.

ESE 150 – Lab 04: The Discrete Fourier Transform (DFT)

ESE 150 – Lab 4 Page 16 of 17

As a Non inverting Amplifier:

The LM741 is a general-purpose amplifier than can be used in a variety of applications and
configurations. One common configuration is in a noninverting amplifier configuration. In this
configuration, the output signal is in phase with the input, the input impedance of the amplifier is high,
and the output impedance is low. The characteristics of the input and output impedance is beneficial for
applications that require isolation between the input and output. No significant loading will occur from
the previous stage before the amplifier. The gain of the system is set accordingly so the output signal is a
factor larger than the input signal.

ESE 150 – Lab 04: The Discrete Fourier Transform (DFT)

ESE 150 – Lab 4 Page 17 of 17

As a summer circuit:

We saw previously in the non-inverting operational amplifier that the non-inverting amplifier has a single
input voltage, (Vin) applied to the non-inverting input terminal. If we add more input resistors with more
inputs, we end up with another operational amplifier circuit called a Summing Amplifier, “summing
inverter” or even a “voltage adder” circuit as shown above.

