

Lecture \#4 - Converting from time to frequency domain
ESE 150 -
DIGITAL AUDIO BASICS

ESE 150 - Spring 2020
TEASER
Play this on piano:


## ESE 150 - Spring 2020

## InFORMATION

1s / quarter note $\boldsymbol{\rightarrow} \mathbf{1 0}$ s of sound
How many bits to represent 10 s of sound with 16 b samples and 44 KHz sampling? $44 \mathrm{~K} \mathrm{~Hz} \times 16 \mathrm{~b} /$ sample $\times 10 \mathrm{~s}=7040 \mathrm{~K}=7 \mathrm{Mbits}$



How does musical staff represent sound?
What does vertical position represent?
Note shape?



## Frequency Repressentation

How much information is this musical staff communicating?
How many keys on piano? $\rightarrow$ bits/note





## TIME-DOMAIN \& FREQUENCY-DOMAIN

## As an example...let's say we have a pure tone

If period: $T=1 / 2$ and Amplitude $=3$ Volts
$s(t)=A \sin (2 \pi f t)=A \sin (2 \pi 2 t)$



## ESE 150 - Spring 2020

FREQUENCY-DOMAIN
Of course, not all signals are this simple
For example: $\mathbf{s}(\mathbf{t})=\sin (2 \times 2 \pi \times t)+{ }_{2}{ }^{\mathbf{s}} \sin (2 \pi \times t)$
Question: What will the frequency representation look like?



Remember Week 2: Preclass 3


Xector Background
ESE 150 - Spring 2020

## VECTOR SPACE

We're familiar with multi-dimensional spaces and vector representation
E.g. Cartesian Coordinates in 2 Space

2 dimensions X, $Y$
Represent points as vector with 2 elements ( $x, y$ )
Preclass 4a
What is the $(x, y)$ coordinate of the red dot?


## ORTHOGONAL BASIS

We're familiar with multi-dimensional spaces
We can describe any point in the space by a linear combination of orthogonal basis and vector representation elements
E.g. Cartesian Coordinates in 2 Space
$x$-- [1,0]
$y$-- $[0,1]$
Any point:

$$
a^{*} x+b^{*} y=[a, b]
$$

Orthogonal - no linear scaling of one gives the other Dot products are zero
Combine by linear superposition


## Different Representations

## Can change Representations

Both Cartesian and Polar Coordinates can describe points in the same space. polar coordinates

A different orthogonal basis
(magnitude, $\Theta$ )
What is the polar coordinate of the red dot? (4b)


ESE 150 - Spring 2020

## COMPLEX NUMBERS

## Complex Numbers are an example of this

Real dimension
Imaginary dimension
Cartesian version: $a+b i$
Polar (Magnitude, angle) version: $M \times e^{i \theta}$
Euler's Formula: $e^{i \theta}=\cos \theta+i \sin \theta$

The frequency domain \&


FOURIER SERIES = MORE FORMALLY
The Fourier Theorem states that any periodic function $f(t)$ of period L can be cast in the form:
$f(t)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi t}{L}+b_{n} \sin \frac{n \pi t}{L}\right)$

The constants: $a_{0}, a_{n}$, and $b_{n}$ are called the Fourier coefficients of $f(t)$


## ESE 150 - Spring 2020

FOURIER SERIES (REXIEW OF KEY POINTSS)
The idea of the series:
Any PERIODIC wave can be represented as simple sum of sine waves
2 Caveats:
Linearity:
The series only holds while the system it is describing is linear because it relies on the superposition principle
-aka - adding up all the sine waves is superposition in action
$\qquad$
The series only holds if the waves it is describing are periodic Non-periodic waves are dealt with by the Fourier Transform We will examine that in the $2^{\text {nd }}$ half of lecture

INTERLUDE
Wellness
Remember we said we needed to sample at twice the maximum frequency

Now see all signals can be represented as a linear sum
https://docs.google.com/presentation/d/1q55pA hZbpjigHSr0jW94zQkhWi5tyXtZkokMDSOZVVA/ of frequencies edit\#slide=id.p
...and the frequency components are orthogonal Can be extracted and treated independently


XECTOR BACKGROUNR

## CHANGE OF BASES <br> There are more than one set of basis vectors that span a space <br> For example, might rotate 90 degrees in Cartesian

 coordinates$b 1=\left[\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, b 2=\left[\sum_{\sqrt{2^{-}}}^{-\frac{1}{2^{7}}}\right.\right.$
Note dotproduct(b1,b2)=0
Represent points as linear combination: a*b1+c*b2


ESE 150 - Spring 2020
ChANGE OF BASES
Can change basis by performing dot product
$b 1=\left[\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right], b 2=\left[\begin{array}{cc}1 & -1 \\ \sqrt{2} & \frac{1}{2}\end{array}\right.$
Represent points as linear combination: a*b1+c*b2 a=dotproduct([x,y],b1); c=dotproduct([x,y],b2)

What are a and c for
preclass 4a case?
Check correct by seeing that a*b1+c*b2 is what we expect


| ESE 150 - Spring 2020 |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Note B1 to B5 were sample values from 1, 2, 3, 4, 5 Hz sine waves |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 0 | 1 | 2 | 3 |  | 4 | 5 | - | 7 | 8 | 9 | 10 |
| time |  | 0.1 | 0.2 | 0.3 |  | 0.4 |  | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 |
| Sample | 0 | 0.95 | 0.59 |  |  | -0.95 | 0 | 0.95 | 0.59 | -0.59 | -0.95 | 0 |
|  | 0 |  | 2 | 3 | 4 |  |  | 6 |  | 8 |  | 10 |
| $\mathrm{k}=1$ | 0.00 | 0.59 | 0.95 | 0.95 | 0.59 | 0.0 |  | -0.59 | -0.95 | -0.95 | -0.59 | 0.00 |
| K=2 | 0.00 | 0.95 | 0.59 | -0.59 | -0.95 | 50 |  | 0.95 | 0.59 | -0.59 | -0.95 | 0.00 |
| K=3 | 0.00 | 0.95 | -0.59 | -0.59 | 0.95 | 0.0 |  | -0.95 | 0.59 | 0.59 | -0.95 | 0.00 |
| $\mathrm{K}=4$ | 0.00 | 0.59 | -0.95 | 0.95 | -0.59 | 9.0 |  | 0.59 | -0.95 | 0.95 | -0.59 | 0.00 |
| k=5 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.0 |  | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

Sample $[i]=\sin \left(\frac{2 \pi k \times i}{T}\right)$
When we compute the dot-product with discrete frequency samples, the only non-zero was the frequency in the signal!
$\begin{array}{llllllllllll}\text { time } & 0.0 & 0.1 & 0.2 & 0.3 & 0.4 & 0.5 & 0.6 & 0.7 & 0.8 & 0.9 & 1.0\end{array}$ $\begin{array}{llllllllllll}\text { Sample } & 0 & 0.95 & 0.59 & -0.59 & -0.95 & 0 & 0.95 & 0.59 & -0.59 & -0.95 & 0\end{array}$


ESE 150 - Spring 2020

## Observe

Can identify frequencies with dot product
Identifying projection onto each basis vector in Fourier Series

Works because frequency sine waves are orthogonal

Performing a change of basis
From time-sample basis
To Fourier (sine, cosine) basis

## TIME AND FREQUENCY BASES

Time Sample basis
Also a multi-dimensional space
Dimension = \# time samples
Vector $\left[\mathrm{t}_{0}, \mathrm{t}_{1}, \mathrm{t}_{2}, \mathrm{t}_{3}, \ldots.\right]$
Frequency basis
Multi-dimensional
Dimensions = Coefficients of sine and cosine components
$f(t)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n 2 \pi t}{L}+b_{n} \sin \frac{n 2 \pi t}{L}\right)$
Vector $\left[\mathrm{a}_{0}, \mathrm{a}_{1}, \mathrm{~b}_{1}, \mathrm{a}_{2}, \mathrm{~b}_{2}, \ldots\right]$

## SE 150 - Soring 2020

## FREQUENCY-DOMAIN

How to make a song appear "periodic"
Treat the entire song as 1 period of a very complicated sinusoid!
(or some length of time, linke 25 ms or 1024 samples)
This is the assumption of the Fourier Transform

## DISCRETE FOURIER TRANSFORMS

Fourier Transforms are nice,
but we want to store and process our signals with computers
We extend Fourier Transforms into Discrete Fourier Transforms, or DFT

We know our music signal is now discrete: $x(t) \rightarrow f[k]$
The signal contains $\mathbf{N}$ samples: $0 \leq k \leq N-1$

## DFT - Discrete Fourier Transform

Represent any sequence of time samples as
$f[k]=a_{0}+\sum_{n=1}^{N}\left(a_{n} \cos \frac{n 2 \pi k}{N}+b_{n} \sin \frac{n 2 \pi k}{N}\right)$

## REMEMBER WEEK 2: PRECLASS 3



## ESE 150 - Spring 2020

DFT = DIscrate Fourier Transform
Represent any sequence of time samples as
$f[k]=a_{0}+\sum_{n=1}^{N}\left(a_{n} \cos \frac{n 2 \pi k}{N}+b_{n} \sin \frac{n 2 \pi k}{N}\right)$
Compute $\mathbf{a}_{\mathbf{n}}, \mathbf{b}_{\mathbf{n}}$ by dot product - preclass 5 !

$$
\begin{aligned}
& a_{n}=\left(\frac{2}{N}\right) \sum_{k=0}^{k=N}\left(\operatorname{Sample}[k] \times \cos \left(\frac{n 2 \pi k}{N}\right)\right) \\
& b_{n}=\left(\frac{2}{N}\right) \sum_{k=0}^{k=N}\left(\operatorname{Sample}[k] \times \sin \left(\frac{n 2 \pi k}{N}\right)\right)
\end{aligned}
$$

Remember Week 2: Prechass 3

$\sin (100 \times 2 \pi \times t)+\sin (250 \times 2 \pi \times t)$
$f[k]=a_{0}+\sum_{n=1}^{N}\left(a_{n} \cos \frac{n 2 \pi k}{N}+b_{n} \sin \frac{n 2 \pi k}{N}\right)$
$b_{100}=1, b_{500}=1 \ldots$ rest $a_{i}, b_{i}=0$

## DFT - DIscreme Fourier Transform

Compute $a_{n}, b_{\mathbf{n}}$ by dot product - preclass 5!
$a_{n}=\binom{2}{N} \sum_{k=0}^{k=N}\left(\right.$ Sample $\left.[k] \times \cos \left(\frac{n 2 \pi k}{N}\right)\right)$
$b_{n}=\left(\frac{2}{N}\right) \sum_{k=0}^{k=N}\left(\right.$ Sample $\left.[k] \times \sin \left(\frac{n 2 \pi k}{N}\right)\right)$
$b_{n}=\left(\frac{2}{N}\right) \sum_{k=0}\left(S a m p l e[k] \times \sin \left(\frac{N}{N}\right)\right)$

|  |  |  | 2 |  |  | 5 |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{n}=1$ | 0.00 | 0.59 | 0.95 | 0.95 | 0.59 | 0.00 | -0.59 | -0.95 | -0.95 | -0.59 | 0.00 |
| $\mathrm{n}=2$ | 0.00 | 0.95 | 0.59 | -0.59 | -0.95 | 0.00 | 0.95 | 0.59 | -0.59 | -0.95 | 0.00 |
| $\mathrm{n}=3$ | 0.00 | 0.95 | -0.59 | -0.59 | 0.95 | 0.00 | -0.95 | 0.59 | 0.59 | -0.95 | 0.00 |
| $\mathrm{n}=4$ | 0.00 | 0.59 | -0.95 | 0.95 | -0.59 | 0.00 | 0.59 | -0.95 | 0.95 | -0.59 | 0.00 |
| $\mathrm{n}=5$ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |

58

## DFT = DISCRETE FOURIER TRANSFORM

Represent any sequence of time samples as
$f[k]=a_{0}+\sum_{n=1}^{N}\left(a_{n} \cos \frac{n 2 \pi k}{N}+b_{n} \sin \frac{n 2 \pi k}{N}\right)$
Compute $\mathbf{a}_{\mathbf{n}}, \mathbf{b}_{\mathbf{n}}$ by dot product sum over different dimensions!

$$
\begin{aligned}
& a_{n}=\binom{2}{N} \sum_{k=0}^{k} \overleftarrow{N=N}\left(\text { Sample }[k] \times \cos \left(\frac{n 2 \pi k}{N}\right)\right) \\
& b_{n}=\left(\frac{2}{N}\right) \sum_{k=0}^{k=N}\left(\text { Sample }[k] \times \sin \left(\frac{n 2 \pi k}{N}\right)\right)
\end{aligned}
$$

## DFT - DISCRETE FOURIER TRANSFORM (COMPLEX REPRESENTATION)

Represent any sequence of time samples as

$$
f(k)=\frac{1}{N} \sum_{n=0}^{N-1} \boldsymbol{X}_{\boldsymbol{n}} e^{-i\left(\frac{2 \pi n k}{N}\right)}
$$

Compute $\mathbf{X}_{\mathrm{n}}$ by dot product

$$
X_{n}=\sum_{k=0}^{N-1} x_{k} \times e^{-i \frac{2 \pi k n}{N}}
$$

## ESE 150- Sprine 202

## DFT - Discrete Fourier Transform (COMPLEX REPRESENTATION)

Compute $\mathrm{X}_{\mathrm{K}}$ by dot product

$$
X_{n}=\sum_{k=0}^{N-1} x_{k} \times e^{-i \frac{2 \pi k n}{N}}
$$

To find the energy at a particular frequency, spin your signal around a circle at that frequency, and average a bunch of points along that path.
$\times$ Same as $\ldots$ compute $\mathbf{a}_{\mathbf{n}}, \mathbf{b}_{\mathbf{n}}$ by dot product

$$
a_{n}=\binom{2}{N} \sum_{k=0}^{k=N}\left(\operatorname{Sample}[k] \times \cos \left(\frac{n 2 \pi k}{N}\right)\right)
$$

DFT - DIScrete Fourier Transform (COMPLEX REPRESENTATION)

Compute $\mathbf{X}_{\mathbf{n}}$ by dot product

$$
X_{n}=\sum_{k=0}^{N-1} x_{k} \times e^{-i \frac{2 \pi k n}{N}}
$$

$$
b_{n}=\left(\frac{2}{N}\right) \sum_{k=0}^{k=N}\left(\text { Sample }[k] \times \sin \left(\frac{n 2 \pi k}{N}\right)\right)
$$

$\qquad$

## ESE 150 - Spring 2020

DON'T LET NOTATION CONFUSE YOU EXPANDING.:.:

$$
b_{n}=\left(\frac{2}{N}\right) \sum_{k=0}^{k=N}\left(\operatorname{Sample}[k] \times \sin \left(\frac{n 2 \pi k}{N}\right)\right)
$$

E.g. for $\mathrm{n}=2$, this says
$b_{2}=\left(\frac{2}{N}\right)$ dotproduct (Sample, $\left.\left[\sin (0), \sin \left(\frac{2 * 2 \pi * 1}{N}\right), \sin \left(\frac{2 * 2 \pi * 2}{N}\right), \ldots\right]\right)$
$b_{2}=\left(\frac{2}{N}\right)$ dotproduct (Sample, $\left.[0,0.95,0.59,-0.59,-0.95,0,0.95,0.59,-0.59,-0.95,0]\right)$
...which is dot product we performed in preclass 5


## SAYING RESOURCES

However, $\mathbf{N}$ can get very large
e.g., with a sampling rate of $44,000 \mathrm{~Hz}$

How big is N for a 4 minute song?
How many operations does this translate to?
To compute one frequency component?
To compute all N frequency components?
This is not practical. Instead, we use a window of values to which we apply the transform

Typical size: ..., 512, 1024, 2048, ...

## A WINDOW OPERATION

In the example below, we traverse the signal but only look at 64 samples at a time

(sepwww.stanford.edu/oldsep/hale/FftLab.html)

## RECONSTRUCTION

Not really connect-the-dots in time (previous explanation was oversimplified)
Recall near Nyquist rate
Could often miss the peak
Get poor sine waves
..look like peak moves around even if sampled above Nyquist rate
Better reconstruction
Convert to frequency
Which can perfectly represent up to half sampling rate Reconstruct from frequency basis

## This Week In Lab

## Lab 4:

You will identify Frequency components using FFT in Matlab

Bring headphones

Remember:
Lab 3 report is due on Friday

ESE 150 - Spring 2020

## CONNECT THE DOTS

Intuition, with enough dots, not hard to "connect-the-dots" to reconstruct (understand) the continuous signal.

What is the continuous signal here? (Lecture 1: preclass 3)
Assumes certain regularity conditions
What is enough?


## ESE 150 - Spring 2020 <br> Big IDEAS <br> Can represent signals in frequency domain <br> Different basis - basis vectors of sines and cosines

Often more convenient and efficient than time domain

Remember musical staff
Can convert between time and frequency domain

Using a dot-product to calculate time or frequency components

$$
f(t)=\frac{a_{o}}{2}+\sum_{n=1}^{N}\left[a_{n} \cos (n t)+b_{n} \sin (n t)\right]
$$

## Learn More

ESE325 - whole course on Fourier Analysis
ESE224 - signal processing
ESE215, 319, 419 - reason about behavior of circuits in time and frequency domains

## ESE EEO-Spring 2020 <br> References <br> S. Smith, "The Scientists and Engineer's Guide to Digital Signal Processing," 1997. <br> https://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform/

