Work Preclass
4:35pm lecture start

Lecture #7 — Digital Logic

ESE 150 —
DIGITAL AuDio BAsIcs

ESE150 Spring 2020

Based on slides © 2009--2020 DeHon

MiC
N

Music domain

conversion
5,6

\ sample freq pyscho-

< DIA <— 1010

> AD > 10101001101

acoustics (3

3/25/20

DFT
. Identify Masking
Huffman encoding
—
KX
@6\@

Huffman Decode
IDFT

1001101

MP3 Player / iPhone / Droid

2

ESE150 Spring 2020

How PROCESS

How do we build a machine to perform these
operations?

From Digital Samples - compressed digital data >
Digital Samples

Down to bottom

If we can build one kind of primitive element,
...and connect together large collections of them

can build a machine to perform any digital computation

LECTURE TOPICS

Setup

Where are we?
Combinational Logic
Sequential Logic
FPGAs

Next Lab

Will try asking questions
like we usually do.

Go in Alphabetical order.

When called upon,
unmute and answer.

ESE150 Spring 2020

ysample freq pyscho-

\ acoustics (3)/

MP3 Player / iPhone / Droid

12 5

OK speaker

COURSE MAP — WEEK 8
MIC
N

> AD > 10101

7

ﬁ%ﬁ’i’

Music domain

conversion
5,6

\ sample freq
2 4

pyscho-

acoustics

< D/A «<— 10101001101

ESE150 Spring 2020

speaker

MP3 Player / iPhone / Droid

COMBINATIONAL LOGIC

ESE150 Spring 2020

AND GATE

AND —:)_

Output is 1 (true) when all inputs are 1 (true)

4 a2 0o o
4 0o =~ o
-~ o o o

ESE150 Spring 2020

OR GATE

or 2=

Output is 1 (true) when any input is 1 (true)
(fillin truth table for OR)

- 2 oo
= ol - (o

ESE150 Spring 2020

3/25/20

GATE

Primitive binary function
Computes a binary output from a small number of binary
inputs

Can specify function with a Truth Table
Defines the output for each input combination

[N =)
- O = O

ESE150 Spring 2020

NOT GATE

Not E

Output is opposite of input

ESE150 Spring 2020

OR GATE

Output is 1 (true) when any input is 1 (true)
(fillin truth table for OR)

O i =)
- O = O
A A a o

or 2=

3/25/20

ESE150 Spring 2020

CLAIM

Can compute any Boolean Function from AND,
OR, NOT

(actually from NAND)

ESE150 Spring 2020

MoDEL: COMBINATIONAL LOGIC

Compute some “function”
f(io,i1,. In) —> 00,01,...0m

Each unique input vector
implies a particular, deterministic, output vector

ESE150 Spring 2020

Bic AND

AND —:)_

Output is 1 (true) when all inputs are 1 (true)

How build n-input AND from AND2 gates?

ESE150 Spring 2020

Bic AND

AND —:)_

Output is 1 (true) when all inputs are 1 (true)

How build n-input AND from AND2 gates?

H-DDDDP

ESE150 Spring 2020

Bic OR

or 2=

Output is 1 (true) when any input is 1 (true)

How build n-input OR from OR2?

ESE150 Spring 2020

Bic OR

or 2=

Output is 1 (true) when any input is 1 (true)

How build n-input OR from OR2?

Dol pessent

3/25/20

INPUT CASE

How can we create an expression that is true
for a specific input case?

E.g. have a function of 4 inputs: a, b, ¢, d
How many potential values for a, b, ¢, d?
Rows in our truth table
Give one example of values for a, b, c, d?
How create an expression that is true for that
case?

INPUT CASE

How can we create an expression that is true
for a specific input case?

E.g. have a function of 4 inputs: a, b, ¢, d

How many potential values for a, b, c, d?
Rows in our truth table: 24 =16

Give one example of values for a, b, ¢, d?

a&lb&lc&d a
(! for inversion, & for and) b
How create an expression c

that is true for that case?

ESE150 Spring 2020

SINGLE OUTPUT DIGITAL FUNCTION

Given have logic to implement each input case
How implement entire function?

- A A a0 0 O o
4 2 00 =2 2 0o
O R N =)
-~ 0o ooo o =~

‘

SINGLE OUTPUT DIGITAL FUNCTION

Given have logic to implement each input case
How implement entire function?

- 2 2 2 00 oo
.~ A 00~ 0o
- 0O 2 0 20 =~ 0
- O O O O O O =

N
N

ESE150 Spring 2020

MULTIPLE QUTPUT FUNCTION

What do you do if your Digital Function needs
multiple output bits?

ESE150 Spring 2020

COMBINATIONAL LOGIC As GATES

Start with truth table
Single output {0, 1}
Use inverters to produce complements of inputs
For each input case
If outputis a 1

Develop an AND to detect that case
Decompose AND into gates

OR together the output of all such AND functions
Decompose OR into gates

Multiple outputs
Repeat for each output

This solution won't typically be the smallest or fastest...

3/25/20

CONCLUDE NAND2 GATE _}
Can implement any combinational logic
function out of a collection of —:)_Do_
OR2, AND2, NOT gates NAND = NOT AND —
Output is 0 (false) when all inputs are 1 (true); 0
otherwise
0 0 1
0 1 1
1 0 1
1 1 0

NAND UNIVERSALITY NAND UNIVERSALITY
How implement How implement
NOT AND OR
a

NAND UNIVERSALITY _@_ MULTIPLEXER GATE s
Can implement MUX 0
NOT from NAND2 D@ When S=0, output=i0 i

AND2 from NAND2 When S=1, output=i1
OR2 from NAND2

Can implement any combinational logic 0 0 0
function out of a collection of g ? :) Truin Table?
OR2, AND2, NOT gates 0 1 1 ﬁn"'p?eﬁg{&g?
Therefore: Can implement any combinational 1 0 0
logic function out of a collection of NAND2 1 ‘13 (1)
gates)))
z

ESE150 Spring 2020

MULTIPLEXER GATE s
MUX 0
When S=0, output=i0 “

When S=1, output=i1

Truth Table?

AND, OR, NOT
Implementation?

(i0&!S) | (11&S)
&--and

| --or
!'-- not

- BN-RNoEleE
-4 2 00 =~ 2 0 o
- ol - el - ol - [
- Bl-EE-B8cE

3/25/20

ESE150 Spring 2020

ARITHMETIC

Addition is also a digital logic function
Maps set of inputs (a3 a2 a1 a0 b3 b2 b1 b0)
To an output bit vector (c4 ¢3 c2 c1 c0)

...as is subtraction, multiplication, division,
square root....

ESE150 Spring 2020

FuLL ADDER

Adds 3 inputs to produce 2b output
Binary inputs: a, b, ¢
Binary outputs: carry, sum a
Two bit result:
carry*2 +sum = atb+c | |
Can produce truth table and logic (Lab) F

b c

A

ESE150 Spring 2020

N-BIT ADDER

Given Full Adders
Can build N-bit adder by connecting N full adders

b3 a3 b2 a2 b1 a1t b0 a0 0

FA FA FA FA

ESE150 Spring 2020

EXAMPLE: BIT-LEVEL ADDITION

Addition
Base 2 example
Work together

C: 11011010000
A: 01101101010
B: 01100101100
S: 11010010110

SEQUENTIAL LOGIC

3/25/20

ESE150 Spring 2020

Mux wITH FEEDBACK

What happens when S=0?
What happens when S=1?

ESE150 Spring 2020

Mux wITH FEEDBACK

What happens when S$=07?
Out=i0 — passes input to output

What happens when S$=1?
Out=0ut — holds values

ESE150 Spring 2020

Mux wiTH FEEDBACK

Assuming i0 doesn’t change
what happens when S goes from 0 to 1?

ESE150 Spring 2020

Mux wiTH FEEDBACK

Assuming i0 doesn’t change
what happens when S goes from 0 to 1?
Samples value from i0 and holds it on output

ESE150 Spring 2020

LATCH

Element that can hold a o t
previous value of an input

Input Latch Output

Hold

ESE150 Spring 2020

FLIP-FLOP (FF)

Use a pair to create a flip-flop .«
Also call register

What happens when

3/25/20

ESE150 Spring 2020 ESE150 Spring 2020

FLIP-FLOP (FF) FLiP-FLOP (FF)

Use a pair to create a flip-flop Use a pair to create a flip-flop ..«
Also call register Also call register

What happens when Sample D input on 0->1
transition of clock (CLK)

D input passes to second mux,
Never an open path from

Second mux holds output

D->Q
First mux holds input _ One of the mux latches always
Second mux passes output of first CLK in hold state CLK

D Q D FE Q
D input at 0 latched (held) -

Second mux passes that D value to output

- ..]

ESE150 Spring 2020

ESE150 Spring 2020

STATE ELEMENT ACCUMULATOR

Latch or Register is a state element Sum a sequence of values
Allows circuit to remember a vacl&(le
Build computations that

Depend on past inputs
Reuse hardware in time

ESE150 Spring 2020 ESE150 Spring 2020

ACCUMULATOR ACCUMULATOP

Start with an Adder Store running sum a3 a2 at| a0| o
as state in registers

b3 a3 b2 a2 b1 a1 b0 a0 0 a3 i3 a2 i2 a1l i1l a0 i0 O

3 3 3 3 3
® @© @ @]
mmﬂﬂ ﬂﬂﬂﬂ =2 = = =
D o o o
E) N -- o
IJF_FH IJF_FH
c0

c4 c3 c2 [

e mau
g8 mau
28 mau
Le”mau

08 Mmau

ACCUMULATOR

Wrap register outputs
back to inputs

3/25/20

ACCUMULATOR

What happens:
Start with a3:a0 at 0
CLK low
13:i0=2 (0010)

FF inputs?

ACCUMULATOR

What happens:
Start with a3:a0 at 0
CLK low
13:i0=2 (0010)
CLK goes high: a3:a0?
13:0=3 (0011)
FF inputs? -

ESE150 Spring 2020

ESE150 Spring 2020

AL

ACCUMULATOR

Maybe extend
accumulator bits to hold
larger sum

Maybe more...

ACCUMULATOR

What happens:
Start with a3:a0 at 0
CLK low
13:i0=2 (0010)
FF inputs?
CLK goes high: a3:a0?

ACCUMULATOR

What happens:
Start with a3:a0 at 0
CLK low
13:i0=2 (0010)
CLK goes high: a3:a0?
13:0=3 (0011)
FF inputs?
CLK goes high: a3:a07 |

ESE150 Spring 2020

i3 i2 i i0
i I o i I O i O L
a3 a2 al a0

ESE150 Spring 2020

AL

K

a2 al a0

3/25/20

ESE150 Spring 2020 ESE150 Spring 2020

ACCUMULATOR STATE FOR SEQUENCING AND CONTROL

a=0
while (true)
a=a+getinput();

Useful when trying to control things
E.g. Perform a sequence of operations

Robot
Open-gripper
Move-forward
Close-gripper
Lift

Accumulates
input values i

Integration or
summation

ESE150 Spring 2020 ESE150 Spring 2020

STATE FOR CONDITIONAL CONTROL FINITE-STATE MACHINE (FSM)
Useful when need to behave differently based Sequential model of computation
on something in the past State (in registers) + combinational logic
Remember if elevator going up or down Compute outputs and next state
Remember/count coins from consumer from inputs and state - /\ -

Remember some mode set by user
Displaying in Centigrade or Fahrenheit

Idea
Store state
Use as input to logic

ESE150 Spring 2020 ESE150 Spring 2020

FSM EXAMPLE TRUTH TABLE MODEL

Simplified Vending Machine
Only input quarters
Only vend one item (output signal to indicate vending)

vend qreturn next
Item costs 2 quarters waiting 0 0 waiting
Coin Return request and control waiting -
waiting 0 0 one

waiting

Two states: waiting, one-quarter (one) one
Two inputs: quarter, coin-return (creturn) one

Two outputs: vend, return-quarter (qreturn) Z:Z

a4 2 00 - 2 00
24 O A0 a0 =2 0o

10

ESE150 Spring 2020

TRUTH TABLE MODEL

vend qreturn next
waiting 0 0 0 0 waiting
waiting 0 1 0 0 waiting
waiting 1 0 0 0 one
waiting 1 1 4=
one 0 0
one 0 1
one 1 0
one 1 1

ESE150 Spring 2020

TRUTH TABLE MODEL

vend qreturn next
waiting 0 0 0 0 waiting
waiting 0 1 waiting
waiting 1 0 0 0 one
waiting 1 1 0 1 waiting
one 0 0 0 0 one
one 0 1 4=
one 1 0
one 1 1

@
@

ESE150 Spring 2020

TRUTH TABLE MODEL

vend qreturn next
waiting 0 0 0 0 waiting
waiting 0 1 0 0 waiting
waiting 1 0 0 0 one
waiting 1 1 0 1 waiting
one 0 0 0 0 one
one 0 1 0 1 waiting
one 1 0 1 0 waiting
one 1 1 =

3/25/20

ESE150 Spring 2020

TRUTH TABLE MODEL

vend qreturn next
waiting 0 0 0 0 waiting
waiting 0 1 0 0 waiting
waiting 1 0 0 0 one
waiting 1 1 0 1 waiting
one 0 0 <=
one 0 1
one 1 0
one 1 1

ESE150 Spring 2020

TRUTH TABLE MODEL

vend qreturn next
waiting 0 0 0 0 waiting
waiting 0 1 0 0 waiting
waiting 1 0 0 0 one
waiting 1 1 0 1 waiting
one 0 0 0 0 one
one 0 1 0 1 waiting
one 1 0 4=
one 1 1

ESE150 Spring 2020

TRUTH TABLE MODEL

vend qreturn next
waiting 0 0 0 0 waiting
waiting 0 1 0 0 waiting
waiting 1 0 0 0 one
waiting 1 1 0 1 waiting
one 0 0 0 0 one
one 0 1 0 1 waiting
one 1 0 1 0 waiting
one 1 1 0 1 one

11

3/25/20

ESE150 Spring 2020

SWITCH-STATEMENT MODEL

While (true)
switch (state) {
case waiting:
if (quarter && !creturn)
state=one;
else
state=waiting;
greturn=quarter && creturn;
vend=0;
break;

ESE150 Spring 2020

FSM GRAPH MODEL

lquarter/

vend=0, greturn=0
quarter&lcreturn/ quarter&!dreturn/
vend=1, greturn=0 vend=0, return=0
Iquarter&!creturn/
vend=0, greturn=0

quarter&creturn/
vend=0, greturn=1

lquarter&creturn/
vend=0, greturn=1

lquarter&!creturn/
vend=0, greturn=0

SWITCH-STATEMENT MODEL (CONT.)

case one:
if ((quarter && !creturn)||
('quarter&&creturn))
state=waiting;
else
state=one;
qreturn=creturn;
vend=quarter&& !creturn;
break;
} Il switch
} /Il while

PROGRAMMABLE LOGIC

ESE150 Spring 2020

Mux cAN BE A PROGRAMMABLE GATE

Programmable Gate
Can be programmed to act as any gate
Use state (e.g. FF) to “program” truth table of a gate

output

select
inputs

- 2 o o
- o =~ o

ESE150 Spring 2020

EXAMPLE: AND

How do we program to behave as AND2?

do0 dO1 d10 di1

(data inputs)
(select

inputs)
s1
sO

ESE150 Spring 2020

EXAMPLE: AND

How do we program to behave as AND2?

do0 do1 d10 did

(select
inputs)

s1

ESE150 Spring 2020

EXAMPLE: OR

How do we program to behave as OR2?

do0 do1 d10 di1

(select
inputs)

s

ESE150 Spring 2020

CONNECTING GATES

Once we can build gates
...still need to connect the gates together.

Select which gate outputs become inputs to
other gates.

i3 i2 it i0
b3 a3 b2 a2 b1 a1 b0 a0 0

L I I o i I O
c4 c3 c2 cl c0

a3 a2 al a0

3/25/20

ESE150 Spring 2020

EXAMPLE: OR

How do we program to behave as OR2?

do0 do1 d10 di1

(data inputs)
(select
inputs)
s1

s0

ESE150 Spring 2020

LooK-UpP TABLE (LUT)

Can generalize to any number of inputs

output

m
m

select
inputs

ESE150 Spring 2020

Mux cAN BE PROGRAMMABLE INTERCONNECT

Trick: Use multiplexer e [
to programmably 1
select gate input. =] -1 r

FF

13

3/25/20

ESE150 Spring 2020

ESE150 Spring 2020

PROGRAMMABLE BLOCKS PROGRAMMABLE GATES AND INTERCONNECT

If time permits:

ESE150 Spring 2020

FIELD-PROGRAMMABLE GATE ARRAY (FPGA) FIELD-PROGRAMMABLE GATE ARRAY (FPGA)

Collection of Programmable Gates

Can “program” by setting state bits

LUTs that can be programmed to be any gate
With optional Flip-Flops to use for state

Programmable interconnect to “wire” the gates together fosweBlox

]
N
g

Iemasmast)
=]
iBe sz

NEXT LAB BIG IDEAS
Can implement any combinational digital logic

Program an FPGA in Verilog function from nand2 gates

Build an adder Can implement any FSM from nand2 gates and

Build an accumulator registers
Should have hardware Can build a single chip that can be programmed
Will need to install software on your computer to behave as any collection of gates

Budget time for that As long as don’t need more gates than it provides

Lab instructions out now

I

14

ESE150 Spring 2020

LEARN MORE

CIS240 - do a bit more logic

ESE370 — how to implement gates, latches, and
memories from transistors

ESE532 — how to build large-scale
computations from logic

ESE150 Spring 2020

REMINDER

Formal Lab Report Due Sunday (11:59pm PDT)
Extra Lab Session to help
Don'’t get stuck for hours on any piece

Lecture/Lab Feedback forms in Google Docs
Linked from syllabus

3/25/20

15

