4/8/20

MiC

N\
> AD > 10101
domain
conversion
o, 39 1 [,
FEERA 2
*ee® EN

\sample freq pyscho- J
A\ acoustics (3)/
2 4 /

< D/A «— 10101001101

ESE150 Spring 2020 AR
click j ﬁ t /4 \
OK speaker MP3 Player / iPhone / Droid

Based on slides © 2009--2020 DeHon
2

DIGITAL AuDio BAsIcs

ESE150 Spring 2020

ESE150 Spring 2020

How PROCESS ECONOMY AND UNIVERSALITY

How do we build a machine to perform these What if we only have a small number of gates?

operations? OR ... how many physical gates do we really
From Digital Samples - compressed digital data > need?
Digital Samples How do we perform computation with minimal hardware?
With simple gates and registers How do we change the computation performed
can build a machine to perform any digital computation by our hardware?

...if we have enough of them.

ESE150 Spring 2020

ESE150 Spring 2020

7,8,9 10101001101

LECTURE TOPICS COURSE MAP
CcPU

mic
Setup \
Where are we?

N\
3. ok

> AD

7

One-gate processor Music domain -
Wide-Word, Stored-Program Processor conversien 6,6 %,] &
Contemporary Processors: ARM, Arduino TN Py,
\ sample fre pyscho- J)
Next Lab \samp 4 B)/ Cloud
\ (@ 4 Y -
3 [
[1
™11
NIC
sp;eaker mjplayer/iphone/nmw
12

ESE150 Spring 2020

COURSE MAP — WEEK 9

domain
conversion
5,6

pyscho-

et
\ sample freq
acoustics (3)/

(2 4

< D/A «<— 10101001101

speaker MP3 Player / iPhone / Droid

7

QuICK REMINDER

ESE150 Spring 2020

MULTIPLEXER GATE ©

MUX o
When S=0, output=i0 i
When S=1, output=i1

4~ a4 4 s 000 o
. 2 00 =~ 20 o
.~ 0~ 0 =~ 0 =~ o
4~ 0 20 =~ 20 o

ESE150 Spring 2020

Mux cAN BE A PROGRAMMABLE GATE

Programmable Gate
Can be programmed to act as any gate
Use state (e.g. FF) to “program” truth table of a gate

output

select
inputs

- 2 o o
- o =~ o

STATE ELEMENT

Latch or Register is a state element
Allows circuit to remember a value
Build computations that o

Depend on past inputs
Reuse hardware in time

ESE150 Spring 2020

NAND UNIVERSALITY

Can implement any combinational logic
function out of a collection of NAND2 gates
Or AND, OR, NOT combination
Or Programmable MUX gates (OR)

4/8/20

ESE150 Spring 2020

PRECLASS 1

What Function?
o1=a&b | b&c | a&c;
02=a’b’c;

How many gates?

MEMORY

ESE150 Spring 2020

Two PIECES OF A MEMORY

Element to remember a value
Way to address/select that element

Dout

ESE150 Spring 2020

PRECLASS 1 IN GATES

ESE150 Spring 2020

RANDOM ACCESS MEMORY

A Memory:
Series of locations (slots)
Can write values a slot (specified by address, WA)
Read values from (by address, RA)
Return last value written

Din

Write'
[p——
Notation: RA ———
slash on wire
means multiple bits wide Dout

CouLD BUILD MEMORY W/ MUXES & LATCHES
... COLLECTION OF REGISTERS

Use latch to remember
(store) values

Perform read select
(addressing) with a

multiplexer latch
enables

latch inputs

Latches

A1:0]

4/8/20

CouLD BUILD MEMORY W/ MUXES & LATCHES
... COLLECTION OF REGISTERS

Perform write select
(addressing) with a

CouLD BUILD MEMORY W/ MUXES & LATCHES
.. COLLECTION OF REGISTERS

Show Decoder logic

Decoder
Write? —
WA[1:0] /_ Latches
wO=Write? & !WA[1] & !WA[0]
1
RA[1:0]

outs

4/8/20

decoder [
Write? — ©
8
WA[1 :0]# § Latches
RA[1:0]
outs
CouLD BUILD MEMORY W/ MUXES & LATCHES

.. COLLECTION OF REGISTERS

Show Decoder logic

Decoder

w3=Write? & WA[1] & WA[0]
Write? — \y2-Write? & WA[1] & ! WA[0]
WA[1:0] /- wi=Write? & IWA[1] & WA[0]
WO=Write? & IWA[1] & IWA[0]

Latches

RA[1:0]

outs

ESE150 Spri

RANDOM ACCESS MEMORY (RAM)
WITH CAPACITOR MEMORIES

ESE150 Spring 2020

KEY ENGINEERING PROPERTY

Store state compactly in memory

A(memory cell) small Din
A(mem) < A(gate)

Depends on few

inputs/outputs

Memory cells share

inputs and ouptuts
Dout

Din
Decoder l
Write? | |
| |
[
WA O3 v
v
v
RA
Learn more: ESE370 Dout 1

ONE-GATE PROCESSOR

4/8/20

ESE150 Spri

IDEA BAsIC IDIOM
Store register and gate outputs in memory Repeat:
Compute one gate at a time Read gate value from memory
Using a single physical gate Perform operation on gate
Write result back to memory
WA[1:0] g Latches. Function
RA[1:0]

a=getInput(0); | IHQ“JH‘-’JG,H [0[1[2[3[4[5]6][7]
c o. 0z
b=getInput(1); a|blc|ti[t2]ol [02] |
c=getInput(2); Tnstruction Fields
t1=adb; c Description Type [Functionn0ln1Out
= . a=getInput(0): read input 0 and put in slot 0 READ|NONE |00 0
t2=b&c; b=getInput(1); | read input 1 and put in slot 1 READ|NONE | 1[0 1
ti=t1]t2; c=getInput(2); || read input 2 and put in slot 2 READ|NONE 202
- . ti=akb; [read value in slot 0 and value in | GATE| AND
v2=agc; slot 1, perform an AND on the val-
ol=t1]t2; 1o ues, and store into slot 3
—a~h- Missing read value in slot 1 and value in | GATE| AND | 1|24
tl=a"b; C step? slot 2, perform an AND on the val-
02=tl1%c; ues, and store into slot 4
. Function t1=t1t2; read value in slot 3 and value in | GATE OR 31413
putOutput (1,02); slot 4, perform an OR on the val-
putOutput (0,01); ues, and store into slot 3
t2=akc; | GATE| AND |02 4

"

ESE150 Spring 2020

OPERATION SEQUENCE OPERATION SEQUENCE
[O[L1]2[3]4]5[6[7] [O[1]2[3]4]5]6][7]
abl(-|t1|t2|01|02| | ‘a‘b‘c‘tl‘t?‘ol‘o?‘ ‘
Instruction Fields Instruction Fields
C Description Type [Functionn0In1/Out C Description Type [Functionn0In1/Out
a=getInput(0); read input 0 and put in slot 0 READ|NONE[0]0]0 a=getInput(0) read input 0 and put in slot 0 READ|[NONE|[0[0] 0
b=getInput(1); read input 1 and put in slot 1 READ|NONE |10 1 I etInput(1); read input 1 and put in slot 1 READ|NONE |10 1
c=getInput(2); read input 2 and put in slot 2 READ|NONE|[2]0] 2 c=getInput(2); read input 2 and put in slot 2 READ|NONE |2 /0] 2
ti=akb; read value in slot 0 and value in | GATE| AND ti=akb; read value in slot 0 and value in || GATE| AND
slot 1, perform an AND on the val- slot 1, perform an AND on the val-
ues, and store into slot 3 ues, and store into slot 3
read value in slot 1 and value in | GATE| AND |1]2| 4 read value in slot 1 and value in | GATE| AND | 1|24 |rion
t2=bsc; slot 2, perform an AND on the val- t2=b&c; slot 2, perform an AND on the val- -
ues, and store into slot 4 ues, and store into slot 4
ti=t1t2; read value in slot 3 and value in | GATE| OR [3[4]|3 ti=t1]t2; read value in slot 3 and value in || GATE| OR |3 |43
slot 4, perform an OR on the val- slot 4, perform an OR on the val-
ues, and store into slot 3 ues, and store into slot 3
I T I T 11 |[Read value in slot 0and value |
in slot 2, perform an AND on the
2 AND |02 4

t2=a&c; M‘Ssmi descri imn? TE 0]2)4 t2=akc; values, and store in slot 4.

ESE150 Spring 2020

OBSERYE

We can sequentialize operations,
reusing the single gate

As long as we can specify the
operation to be performed

What are we specifying?
(break it down, what information need?)

Function

ESE150 Spring 2020

OBSERVYE anmn Ea

We can sequentialize
operations, reusing the
single gate

As long as we can specify the
operation to be performed ™o H

Int

What are we specifying? Funcion
Address to read in first memory
Address to read in second memory
Function to perform on values from memory
Address to store the result of the operation

OBSERVE

We can sequentialize operations,
reusing the single gate

As long as we can specify the
operation to be performed

What are we specifying?
(break it down, what information need?)
Address to read in first memory Function
Address to read in second memory
Function to perform on values from memory
Address to store the result of the operation

ESE150 Spring 2020

INSTRUCTION
Call this specification an Yo uE
instruction
Instructs the
programmable,

reusable operators on =
what to perform

Function

ESE150 Spring 2020

EXPANDING THE STRUCTURE: INPUT

Add a multiplexer
to bring in inputs
Allow as option to
write into data
memory

Data Memory
(Slots)

0

Input 0
Input 1
Input 2
Input 3
Input 4
Input 6
Input 5
Input 7

Function

ESE150 Spring 2020

EXPANDING THE STRUCTURE: QUTPUT

writeback enable, address, value
(from bottom) —— goes to both memories

Add way to load a
designated output
register

Data Memory
(Siots)

4/8/20

EXPANDED CONTROL = INSTRUCTION FILLIN MISSING INSTRUCTION

writeback enable, address, value

(from bottom) — goes to both memories. Instruction Fields . - = - =
c Description Type [Functionnoimiou] [0 [1[2[3 4[5 [6 [7]|
Group the full Type GateOp a=gotluput(0): | read iput 0 and put i slot 0| READ| NONE[0[0[0| [a|b|c|tl[t2[ol 02| |
. oxamory begetinput(1): | read input 1 and put inslot 1 | READ| NONE [1[0 1|
control into c=getluput(2): | read iuput 2 and put in slot2 | READ| NONE | 20 2
01 ot bt a e actress ti=alb; tead value in slot 0 and value in | GATE| AND
instruction = of right memory only) slot 1, perform an AND on the val-
(In0 bits are read address || ues, and store into slot 3 | | | |
. otleftmemor ont) read value in slot 1 and value in | GATE| AND |12 4 T
Set of bits that slot 2, perform an AND on the val- e X
put0 || ves. and store into slot 4 | Ll oo o
tells the structure flioss ti=t1lt2; read value in slot 3 and value in | GATE| OR |34 3 i
,";M slot 4, perform an OR on the val- S—
h t t d Input 4 | ues. and store into slot 3 it
what to ao Input 6
oputs oy
Input7 t2=akic; GATE| AND 0|24 a1
Outputo ol=t1lt2; [read value in slot 3 and value in | GATE| OR |3[4[5 | Ea
upt 1 slot 4, perform an OR on the val- e
Output 2 ues, and store into slot 5 I o
Output 3 t1=a"b; read value in slot 0 and value in | GATE| XOR | 0|13
g::s:;; slot 1, perform an XOR on the val- o
(registers) Output 6 | ues, and store into slot 3 Zﬂﬁﬂ
— Output 7 02=t1%c; read value in slot 3 and value in Qe
slot 2, perform an XOR on the val ot
witeback enable address valve wes, and store into slot 6 ok S b

ESE150 Spring

010001 001

GATE| AND 1
FILLIN MISSING INSTRUCTION INSTRUCTION BITS
Tastruction Fields _ - o ookom = goss s bo memores
Description Type Functionnointow] |0 [1[2[3[4 [5[6 7]
ead input 0 and put in slot READ| NONE a|b t1[t2]ol |02 i Type GateO
ot o ot 1w proy| Llole @ lotlor] | Instructions are ™~ =
read input 2 and put inslot 2| READ| NONE | 2|0 2 just a set of bits
u]~,. value in \w\u\,l.y)m u;\m \]u GATE| AND " 7] (i1 bits are read address
slot 1, perform a on the val- . | g i
s L s AND Type — 2 bits g
T read value in slot 1 and value in | GATE| AND |12 4 o e o t | ottt memory only)
slot 2, perform ai on the val- (rom bottom) —— goes fo Sof memores. - {
s, ore oot 4 S GateOp - 4 bits
ti=t1lt2; read value in slot 3 and value in | GATE| OR |3|4| 3 SR Input 1
slot 4, perform an OR on the val = — In1 - 3 bits ot
ues, and store into slot 3 { | W)H H:ﬂ:l‘;};“%}:j;“:; Input 4

Assume 8 slots
In2 - 3 bits
Out - 3 bits

SATE| AND |02 4
[read value in slot 3 and value in [GATE| OR |3 4[5 |
slot 4, perform an OR on the val-
ues, and store into slot 5
ti=a'b; | read value in slot 0 and value in | GATE| XOR [0[1] 3
slot 1, perform an XOR on the val-
ues, and store into slot 3

read value in slot 3 and value in_J

slot 2, perform an XOR on the val GATE XOR 3

ues, and store into slot 6

(registers) Output &

witsback enable address

ESE150 Spring 2020

INSTRUCTION BITS EXAMPLE INSTRUCTION BITS EXAMPLE

Fillin Missing GATE(AND 010001000001 Fillin Missing GATE| AND 1 010001000001

READ=00; GATE=01; WRITE=11; READ=00; GATE=01; WRITE=11;
AND=0001; OR=0111; XOR=0110; NONE=0000; SEL0=0101 AND=0001; OR=0111; XOR=0110; NONE=0000; SEL0=0101

ti=t1]t2; read value in slot 3 and value in | GATE| OR 3(4| 3| 010111011100011 ti=t1]t2;
slot 4, perform an OR on the val-
ues, and store into slot 3

read value in slot 3 and value in | GATE| OR |34 3 || 010111011100011
slot 4, perform an OR on the val-
ues, and store into slot 3

t2=akc; GATE| AND |02 | 4 | 010001000010100 t2=akc; GATE| AND |02 4 | 010001000010100
o1=t1l%2; read value in slot 3 and value in [GATE| OR |34 5 ol=t1[t2; read value in slot 3 and value in [GATE| OR [3[4[5

slot 4, perform an OR on the val- slot 4, perform an OR on the val-

ues, and store into slot 5 ues, and store into slot 5 (1011101110010

Type

How provide the
sequence of
instructions?

ANIMATE

=

Address
(Program
Counter)

INSTRUCTION SEQUENCE CONTROL

wiiteback enable, address, value
(irom bottom) —- goes to both memories

GateOp

Data Memory
(Siots)

(In1 bits are read address.
of right memory only)

(In0 bits are read address.
of eft memory only)

Function

Output &
(registers) Output 7
witoback enable address value
43

Instruction Memory
000000000000000
0000001000001
000000010000010
1000100001010

010001000010100
from bottom)

0101000000101
010110011010110
100101110000001

100101101000000

Start at PC=0

ANIMATE

Adaress
(Program
tor)

Type--READ |
TT

TypeasWRITE

(registers) o

witeback

Instructon Memon

010001000010100
0101000000101

100101101000000

mo

Input0
Input 1
Input2
Input3
Input 4
Input6
Inputs
Input7

ofleft memory only)
Ouputo
Output 1
Ouput2
Ouput3
Ouputa
Ouput
Ouput &
Ouput7

Function

enable _address

ring 2020

0000000

Start at PC=0

Read Instr. Mem at
0

Decode

input0@

000 1 G
0000 | Functon nput2

00

Typewt

writeback

Type--READ

(regist

RITE

5)

out
0
Ouput3
Output 4
Output
Output 6
- Output 7

enable _address

VL IVIAI TN 0101110110001
010001000010100.

Address | 0101100000101 1

(Program | 010110011010110

Counter) | 100101110000001

Add Memory to
hold set of
Instructions

Note contents match

table on p. 2 of
preclass

Counter to
sequence
instructions

ANIMATE

(Program

Instruction Memory

000000000000000

100101101000000

writeback

K enable, address, value

(irom bottom) — goes to Both memories

Data Memon
s

[] n1 bits are read address
g only)

(In0 bits are read address
of left memory only)

Function

writeback

Type--READ

nput 0
nput 1
Input 2
Input 3
Input 4

Type--WRITE

Input 7

Output 0

Output 1
Output 2
Output 3

Output 4

(registers) ot

Instruction Memory

0000000000000

010001000010100.

010110000001011
010110011010110

Counter) | 100101110000001

Start at PC=0

Read Instr. Mem at
0

(also compute next
PC by adding 1)

ANIMATE

Start at PC=0

Read Instr. Mem at
0

Decode
From input

writeback

writeback

100101101000000

enable address

writeback

from bottom)

I

000w

Output 5
Output &
Output 7

2020

enable, address, valus

goes 1o Both memaries

H

000

(registers) T

ensble _address

Instruction Memory

0D000DODOD000D.
0000000010000

000000010000010
010001000001010
010001001010100
0101110111001

010001000010100

010110000001011
010110011010110
100101110000001

100101101000000

writeback e

valve

able, address, value
‘9085 1o both memories

@ read address

emary only

T (1m0 bits ave read address

of left memory anly)

000
000Q) | Funcsen

o]
]

=1

\
ensble_address

-
fa)
f
‘Io 0

4/8/20

ANIMATE

Start at PC=0

0

Decode
From input
Write Back
Update PC

Read Instr. Mem at

Instructon Memory

0000000000

aoress
(Program
Counter)

100101101000000

riteback enable, address. value
tom) - goes fo Both memaries.

Oata wemory
&5 S
B &
000 [" [(10 bis ae e acvess
ot gt ey oy
o O gt e e aress
000 U ioput0@
— Input 1
0000)| Functon nput2
a pt3
i nput 4
It
00 o nput's
Type--READ [—F nput 7
o
1o ouputo
[rpeinre | Ouput
Ouputz
Oupi3
0 Oupit 4
Ouputs
- a o
(ogses) g gy s
wtoback _ensble _adress vave

ANIMATE

Counter)

PC=1

Read Instr. Mem at
1

(Program | 010110«

writeback

Instruction Memory
0000000000000

9000000100000 1
000000010000010
o

0101110111001
010001000010100

0101100000101

100101101000000

H 000

writeback enbie,
from bottom)

goe 1o Bodh memavies

Data Memory

(i bl ars read aress

‘o right mamory only)

(1 bt are ead advess
et memory only)

001

Function

nput0 @
1b

(registers)

ensble _address

et
A

vale

ANIMATE

Instructon Memory

0000000000

000000010000010
01000100000
010001001010100

2 | otos11011 100011
100010000
Adare 01011000¢
(Program | 0101100110101 10
Counter) | 1001011100000

100101101000000

E150 Spring 2020

urieback enatie a3

s, value
from boftom) -~ goes 1o

PC=1 R M
000 7" [ot bis e o road aess
Read Instr. Mem at w O e
001 um%
Decode 0000]| fers b o
From Input | furts
ey
g b oupis
51
ESE150 Spring 202
ANIMATE Smoomooomt |
T
e
o |
3 [(tonenienes
2 o ot - goes 1 Bo mamories
[
pC=2 el £ e
) P—
Another read ——
o R menoy o
010 o
T et B
0000Q) | Funcion c Input2 ¢
.
|
00 ou s
Type-READ |—F Input7
Type~=WRITE o] Output 0
0
c

ANIMATE

(Program
Counter)

PC=1

Read Instr. Mem at
1

Decode

Writeback and [
update PC

From Input 00

)

writeback

Instruction Memory

$00000000000000

Sootars 1000000
100101101000000 {

writeback enable, address, value
‘bottom) - goss 1o Both memaries

ﬂ 000 B - B

L] (o0 s ave read ackrass
lft memory only)

Inputo @
Input 1 b

Input

Output 0

Output 1
Output 2

1
registers) T =
1

ensble _address

valve

ANIMATE

{Progtam
{Erogan

PC=2
Another read

Writeback, update
PC

00 ou

[peres]
|
J

writeback

Instruction Memory

0D000DODOD000D.
gooooonatonooo

010001000010100
from ol
010110000001011
010110011010110
100101110000001
100101101000000

writeback enable, address, value
tom) - goes

Data Memary
(Slots)

ﬂ 000 %lﬁ

10 Both memories

[C] (1n1 bits are read address

gt memory

T (1m0 bits ave read address
of left memory anly)

010

Function

1

Output 1

1
e |0

ensble_address

4/8/20

ESE150 Spring 2020

Instructon Memory

000000000000000
000000001000001
Py

Instruction Memory

ANIMATE s
B

-
:

s, value writeback enable, address, value
th memaries. ‘g0s 10 both memaries.

PC=3

PC=3
Writeback and

update PC
000] o
Kb e 1 b
|LOOOY}} e ash :imc 0001,
ol ' et
Typen-rerd |0 it ;

i
0 Output 0 a
— Output 1 ¥
i Fertd o |
r Output 5
T‘. adb Qs — + adb
Al

wrteback _enable address

d address
ory only

o

wrteback _enable _addr

55

ESE150 Spring 2020

-
commo0RoTe
PROCESSOR . BasIc IDiom
0100100010100
BTG e
Continue this el Repeat:
sequence ‘ Read gate value from memory
Given PC Perform operation on gate
Read from Instruction - el memayony) .
Memory ‘ Write result back to memory
oo
oot
Instruction bits control Frcen] "
the datapath (memories, -~ s
; ons
function, muxes) nput7
Read from data memory Quput Function
Perform operation §:E::§
Write results back to s 4 L o
memory; update PC oup?

" TS

ESE150 Spring 2020

UNIVERSAL Insiucton ey

so0000000006060 R
Soosaacetaoacet EVIEW
PROCESSOR @ 010001000001010 010001000001010
Address 0101100000011 {from bottom) — goes to both memories S - I t- Addross T (from bottom) —— goes to both memories
fuseas (S ingle active s | Si01100000001
ol e | Caunie | oS00 .
Can change 1 compute element 1 ey
o £ — (programmable EEIEP—
computatio o R gate) S ot st
s i m I be o of left memory only) Ino of left memory only)
ply Sequence in time
changing contents Store state in
of instruction ous memory s
ou Irous ou Irpute
memory reD | nput7 Use Instruction put7
waiTe oot memory to select ot
Ouput and sequence Outputa
s operations Qs
(registers) T Output 7 (registers) T Oupt?
59

10

STOREDR-PRQGRAM PRQCESSOR

BAsiC IDEA

Express computation ¥
in terms of a few primitives

E.g. Add, Multiply, OR, AND, NAND
Provide one of each hardware primitive
Store intermediates in memory

Sequence operations on hardware to perform
larger computation

Store description of operation sequence in
memory as well — hence “Stored Program”

By filling in memory, can program to perform
any computation

ESE150 Spring 2020

BEYOND SINGLE GATE

Single gate extreme to make the high-level point
Except in some particular cases, not practical

Usually reuse larger blocks
Adders
Multipliers

Get more done per cycle than one gate

Now it’'s a matter of engineering the design point

Where do we want to be between one gate and full circuit
extreme?

How many gate evaluations should we physically compute
each cycle?

“STORED PROGRAM” COMPUTER

Can build physical machines that perform
any computation.

Can be built with limited hardware that is
reused in time.

Historically: this was a key contribution of
Penn’s Moore School
ENIAC-> EDVAC

Computer Engineers:
Eckert and Mauchly §

(often credited to
Von Neumann)

BUILDING OUT

000000000000000
0000000100001
000000010000010
010001000001010
010001001010100.
0101110110001
010001000010100

Address | 010110000001011

{Erogran | ototoatiootio
ounter) 0

100101101000000

[T (1 bits are read address
o ory on)

Function

out

Input 5

Type==READ 1 Input 7.

Output0
Type--WRITE Output 1
Output 2

Output 3
Output 4
Output 5

Output &
(registers) L Output 7

wiiteback enable

ESE150 Spring 2020

WORD-WIDE PROCESSORS

Common to compute on multibit words
Add two 16b numbers
Multiply two 16b numbers
Perform bitwise-XOR on two 32b numbers

bf3] a[3] b[2] a[2) b[1) a[1] b[0] a[0]
More hardware U U U

U
16 full adders, 32 XOR gates V V Q? V

3] 2 1] (0]
All programmable gates doing the same thing
So don’t require more instruction bits

4/8/20

11

ESE150 Spring 2020

MuLTIBIT BUS SYMBOLS
b[3:0] a[3:0] b[3] a[3] b[2] a[2] b[1] a[1] b[0] a[0]
‘y c[3] c2] c[1] c[o]
c[3:0] on
WA ——
RA N

ESE150 Spring 2020

ALU OPs (ON 8BIT WORDS)

ADD 00011000 00010100 =
Add 0x18 to Ox14 result is:
Add 24 to 20

ESE150 Spring 2020

ALU OPs (ON 8BIT WORDS)

XOR 00011000 00010100 = 0001100
xor 0x18 to 0x14 = 0x0C
ADD 00011000 00010100 =00101100

Add 0x18 to 0x14 =0x2C0
Add 24 to 20 =44

SUB 00011000 00010100 = 00000100
Subtract 0x14 from 0x18 .. 0x04

INV 00011000 XXXXXXXX =11100111
Invert the bits in 0x18 ...0xD7

SRL 00011000 XXXXXXXX =
Shift right 0x18 ... gives us:

ARITHMETIC AND LOGIC UNIT (ALU)

A common logic primitive is the ALU

Can perform any of a number of operations on a
series of words (strings of bits)

Operations: Add, subtract, shift-left, shift-right,
bitswise xor, and, or, invert,
Operates on “words”
Identify a set of control bits that select the
operation it forms

) A B
Makes it “programmable”

op0

opi

op2

op3

ESE150 Spring 2020

ALU OPS (ON 8BIT WORDS)

ADD 00011000 00010100 =00101100
Add 0x18 to 0x14 =0x2CO0
Add 24 to 20 =44
SUB 00011000 00010100 = 00000100
Subtract 0x14 from 0x18 .. 0x04
INV 00011000 XXXXXXXX =
Invert the bits in 0x18 ...gives us:

ALU OPs (ON 8BIT WORDS)

ADD 00011000 00010100 = 00101100
Add 0x18to 0x14 =0x2C0
Add 24 to 20 =44

SUB 00011000 00010100 = 00000100
Subtract 0x14 from 0x18 .. 0x04

INV 00011000 XXXXXXXX =11100111
Invert the bits in 0x18 ...0xD7

SLL 00011000 XXXXXXXX = 00001100
Shift right 0x18 ...0x0C

4/8/20

12

ESE150 Spring 2020

ALU OPs (ON 8BIT WORDS)

ADD 00011000 00010100 = 00101100
Add 0x18 to 0x14 =0x2C0
Add 24 to 20 =44

SUB 00011000 00010100 = 00000100
Subtract 0x14 from 0x18 .. 0x04

INV 00011000 XXXXXXXX = 11100111
Invert the bits in 0x18 ...0xD7

SLL 00011000 XXXXXXXX = 00001100
Shift right 0x18 ...0x0C

XOR 00011000 00010100 = 0001100

xor 0x18 to Ox14 = 0x0C

ESE150 Spring 2020

ALU-BASED WORD-WIDE PROCESSOR

ESE150 Spring 2020

BEYOND LINEAR SEQUENCE

So far, processor can run a fixed
sequence

Cannot

Implement a loop
Implement an if-then-else

Instr
Mem

ALU ENCODING

ADD 0000
SUB 0010
INV 0001
SLL 1110
SLR 1100
AND 1000

BRANCHING

Allow PC to advance
by value other than 1

Could be negative
Allow data to impact
selection

Add Instruction bits
(or instruction) to
control loading

Only load when data bit is 1 Insi

BRANCH if (SRC1[0]=

ESE150 Spring 2020

Each operation has some bit sequence

op0
opi
op2
op3

ESE150 Spring 2020

ALU-BASED WORD-WIDE PROCESSOR

ESE150 Spring 2020

lem

=1) to PC+SRC2

4/8/20

13

CONTEMPORARY PROCESSQRS

ARDUINO
AVR

Instr
Mem

ARDUINO
AVR

8-bit architecture
8b wide ALU

32x8 Register File
32 register
8b wide

16b instructions
“most” instructions

32KB program

memory

Flash2KB data
memory

SRAM

ESE150 Spring 2020

ATmega328/P Datasheet

83

ESE150 Spring 2020

" ATmega328/P Datasheet

IPOD PROCESSOR

Compare ARM7

ARDUINO

AVR

Adds separate
Data Memory
from Register File
(common,
omitted above for
simplicity)

ATmega328/P Datasheet

INSTRUCTIONS: TWO OPERAND

ADD R1, R2
Says: R1<R1+R2

Use to make code more compact

Arduino (AVR) has 2-operand, where one
operand is both source and destination

ESE150 Spring 2020

4/8/20

14

ESE150 Spring 2020

ESE150 Spring 2020
AVR INSTRUCTIONS
ARITHMETIC AND LOGIC INSTRUCTIONS
Mnemonics Operands Description Operation Flags
ADD Rd, Rr Add two Registers without Carry Rd « Rd +Rr ZCNVH
ADC Rd, Rr Add two Registers with Carry Rd«Rd+Rr+C ZCNVH
ADIW RALK Add Immediate to Word Rdh Rdl « RdhRdl + K ZCNVS
SuB Rd, Rr Subtract two Registers Rd « Rd - Rr ZCNVH
susl Rd, K Subtract Constant from Register Rd «Rd-K ZCNVH
SBC Rd, Rr Subtract two Registers with Carry Rd«Rd-Rr-C ZCNVH
SBCI Rd, K Subtract Constant from Reg with Carry. Rd«Rd-K-C ZCNVH
SBIW RdIK ‘Subtract Immediate from Word RdhRdl « Rdh:Rdl - K ZCNVS
AND Rd, Rr Logical AND Registers Rd « Rd - Rr ZNV
ANDI Rd, K Logical AND Register and Constant Rd«Rd-K ZNV
OR Rd, Rr Logical OR Registers Rd « RdvRr ZNV
ORI Rd, K Logical OR Register and Constant Rd « RdvK ZNV
EOR Rd, Rr Exclusive OR Registers Rd«—Rd @ Rr ZNV
ATmega328/P Datasheet

= S = = = e = D= = =~ = =

AVYR INSTRUCTIONS (LAB APPENDIX)

add Rd, Rr Add without carry: Rd = Rr + Rd and 1 1
C is set to the carry-out bit
adc Rd, Rr Add with carrying: Rd = Rd + Rr + C 1 1

(which was previously set); C is set
to the new carry-out bit
and Rd, Rr Logical And: Rd = Rd AND Rr 1

[\ SN

brne OFFSET Branch Not Equal: If Z=0, Move the 1
instruction execution (back or
forward) by OFFSET.

brpl OFFSET Branch if Positive: If N=0, Move the 1 2
instruction execution (back or
forward) by OFFSET.

ESE150 Spring 2020

DATA MEMORY READ / WRITE (LOAD/STORE)
DATA TRANSFER INSTRUCTIONS
Mnemonics | Operands | Description Operation |Flags #Clocks
MOV Rd, Rr Move Between Registers Rd « Rr None 1
Movw Rd, Rr Copy Register Word Rd+1:Rd « Rr+1:Rr None 1
LDI Rd, K Load Immediate Rd K None 1
LD Rd, X Load Indirect Rd « (X) None 2
LD Rd, X+ Load Indirect and Post-Increment Rd « (X), X~ X+1 None .
ST X,Rr Store Indirect (X) —Rr None 2
ST X+, Rr Store Indirect and Post-Increment X)—RrXe—X+1 None 2
ST -X,Rr Store Indirect and Pre-Decrement XeX-1,(X)—Rr None 2
ST Y, Rr Store Indirect (Y) —Rr None 2
ATmega328/P Datasheet

NEXT LAB

Look at Instruction-Level code for Arduino

Understand performance from instruction-level
code

Need to download Arduino IDE for your
computer

ESE150 Spring 2020

BIG IDEAS
Memory stores data compactly

hardware by reusing hardware in time
Storing computational state in memory

Can store program control in instruction

memory
Change program by reprogramming memory
Universal machine: Stored-Program Processor

Can implement large computations on small

ESE150 Spring 2020

LEARN MORE

CIS240 - processor organization and assembly

CIS371 — implement and optimize processors
Including FPGA mapping in Verilog

ESE370 — implement memories (and gates)

using transistors

4/8/20

15

