
ESE	150	–	Lab	03:	Data	Compression

LAB	03	

In	this	lab	we	will	do	the	following:	
1. Import	sampled	data	into	Matlab	
2. Plot	the	data		
3. Encode	the	data	using	the	Huffman	Encoding	Algorithm	
4. Compare	the	compression	raIos	for	each	of	the	waveforms	

Background:	

Compression	is	an	opImizaIon	for	storing	informaIon	using	as	liLle	computer	storage	space	as	
possible.	It	allows	us	to	get	the	most	out	of	our	hard	drives	and	flash	drives	and	allows	us	to	
transmit	large	data	files	more	quickly.		It	centers	around	the	idea	of	eliminaIng	redundancy	in	
data	and	storing	only	what	is	necessary	to	reconstruct	the	original	data.	

Recall	from	lecture	that	compression	algorithms	fall	into	two	large	categories:	Lossy	and	
Lossless.		A	lossy	algorithm	will	reduce	the	data	to	be	stored	(compress	it),	but	the	original	
signal	that	was	compressed	cannot	be	fully	restored.		In	cases	where	a	lossy	algorithm	is	
acceptable,	the	loss	of	that	data	must	be	acceptable	(as	it	may	be	in	the	case	when	compressing	
audio	data).		A	lossless	algorithm	will	compress	the	data	(by	reducing	redundancy	in	the	data	
file).		However,	when	it	is	de-compressed,	the	original	data	will	be	fully	restored,	so	nothing	will	
be	lost.	

In	this	lab	you’ll	explore	lossless	compression	(through	the	Huffman	Coding	Algorithm).			

In	lab	today,	you’ll	import	two	sampled	waveforms—a	square	wave	and	a	“triangle”	wave—into	
Matlab	and	apply	lossless	compression	to	them	and	see	what	type	of	results	you	achieve.		The	
hope	is	for	you	to	see	how	compression	works	and	the	impact	of	lossless	compression.		

ESE	150	–	Lab	3	 	 Page	� 	of	�1 18

ESE	150	–	Lab	03:	Data	Compression

Prelab:	Introduc3on	to	Matlab	

• Matlab	is	a	commonly	used	so]ware	package	in	Engineering.	
• In	ESE	150	we’ll	use	Matlab	quite	a	bit	to	provide	you	with	intro	to	Matlab	(as	you	will	use	

this	so]ware	throughout	your	engineering	career!).	
• Matlab	is	just	another	programming	language,	and	you	should	be	able	to	transfer	your	skills	

from	Java	(CIS110,	CIS120)	to	Matlab	with	modest	effort.	This	lab	will	help	get	you	started	
on	making	the	transiIon.	

• Matlab	stands	for	“Matrix	Laboratory”.	
• Central	to	Matlab	is	the	idea	that	every	piece	of	data	is	a	Matrix!	
• If	you	are	comfortable	with	Matlab,	you	may	jump	to	Step	9.	

There	are	3	opIons	for	obtaining	or	running	Matlab.	You	can	run	remotely	or	download/pickup	
copy	for	laptop.	The	instrucIons	for	each	opIon	are	listed	below.	

OpIon	1:	Remote	Access	into	your	SEAS	Account		

• Click	on	the	following	link	to	find	instrucIons	on	how	to	remote	access	into	your	SEAS	
account	from	your	personal	computer.	

hLps://www.seas.upenn.edu/cets/answers/virtualLab.html	

• Once	you	are	logged	into	your	account,	search	for	Matlab	in	the	Start	menu.	

OpIon	2:	Download	Matlab	onto	Personal	Computer	

• Click	on	the	following	link	to	find	instrucIons	on	how	to	setup	Matlab	on	your	personal	
computer.					hLps://www.seas.upenn.edu/cets/so]ware/matlab/student/	

• Download	CommunicaIon	System	Toolbox	in	addiIon	to	the	Matlab	2020b	version	
so]ware.	It	is	available	on	hLps://www.mathworks.com.	This	toolbox	is	required	to	
execute	a	command	that	you	will	use	in	the	upcoming	lab.		

o If	you’re	not	sure	you	have	CommunicaIon	System	Toolbox,	open	up	Matlab.	In	
the	command	window,	type	the	following	commands:	

arr = [1 2 3 4]
arr2 = de2bi(arr)

o If	your	computer	doesn’t	have	CommunicaIons	System	Toolbox,	you	will	see	the	
following	message:	

ESE	150	–	Lab	3	 	 Page	� 	of	�2 18

https://www.seas.upenn.edu/cets/answers/virtualLab.html
https://www.seas.upenn.edu/cets/software/matlab/student/

ESE	150	–	Lab	03:	Data	Compression

� 	

o Click	on	the	underlined	porIon	that	says	“CommunicaIons	Toolbox”	and	a	
window	will	open	that	will	let	you	download	the	needed	so]ware.	Click	“Sign	in	
to	Install”,	login	with	your	SEAS	Matlab	account,	and	install	it:	

� 	

• If	you	encounter	any	issues	while	installing	Matlab,	feel	free	to	post	quesIons	on	piazza	
or	come	to	a	TA’s	office	hours	for	help.		

ESE	150	–	Lab	3	 	 Page	� 	of	�3 18

ESE	150	–	Lab	03:	Data	Compression

1. Open	up	Matlab.	
2. The	main	screen	looks	as	follows:	

	

	
	
	

	
	

• The	“Command	Window”	is	where	you	can	type	commands	directly	into	Matlab	and	get	
an	immediate	response.	

• The	“Current	Folder”	shows	you	where	your	files	will	be	saved	on	the	computer.	If	there	
are	already	files	in	the	folder,	you	can	easily	find	and	open	them	inside	Matlab.	

• The	“Workspace”	shows	you	variables	you	have	defined	and	their	dimensions	(like	a	2x2	
matrix	for	instance).	

o AnyIme	you	create	a	variable	in	either	the	command	window	or	in	a	Matlab	
script,	it	will	be	added	to	the	workspace.	

o These	are	the	“values”	Matlab	knows	about	at	any	given	Ime.	

ESE	150	–	Lab	3	 	 Page	� 	of	�4 18

ESE	150	–	Lab	03:	Data	Compression

3. CreaIng	and	manipulaIng	matrices	in	Matlab:	
a. Create	a	2x3	matrix	named	“test”	by	typing	the	following	in	the	command	window:	

test = [1 2 3 ; 4 5 6]
i. NoIce	this	creates	a	matrix	with	dimensions:	2	rows	x	3	columns.	
ii. When	typing	numbers	separated	by	a	space,	you	are	adding	the	numbers	to	

the	same	row.	
iii. When	typing	a	semicolon	(;),	you	are	creaIng	a	new	row	of	numbers.	
iv. Look	in	the	“Workspace”	window	to	see	that	“test”	exists.	

b. Print	the	matrix	to	the	screen	by	typing:	
test

i. NoIce	it	prints	the	matrix	out	to	the	screen.	
c. Print	out	the	element	in	the	matrix	in	the	2nd	row,	3rd	column	by	typing:	

test(2,3)
i. NoIce	that	in	Matlab,	indices	start	with	the	number	1.	

d. Print	out	the	enIre	second	row	by	typing:	
test(2,:)

e. Print	out	the	3rd	column	only	by	typing:	
test(:,3)

f. You	can	assign	the	3rd	column	to	a	new	matrix	by	simply	typing:	
test2=test(:,3)

This	sequence	is	illustraIng	some	of	the	specialized	Matlab	syntax	for	matrices	that	
is	likely	different	from	what	you’ve	seen	in	other	programming	languages.	

4. GeneraIng	and	Plokng	data	in	Matlab	(you	must	try	all	the	following	commands):	
a. You	can	have	Matlab	generate	matrices	for	you,	try	the	following:	

x=(0:10)
i. This	generates	1	row	matrix	from	0	to	10,	with	11	linearly	spaced	points.	
ii. In	Matlab,	a	matrix	with	only	1	row	and	more	than	1	column	is	called	a	

vector.	
b. You	can	have	Matlab	randomly	generate	a	matrix	with	dimensions	of	your	choosing:	

y=rand(1, 11)
i. This	generates	a	1	by	11	matrix	containing	random	numbers	between	0	and	1	

c. Matlab	can	also	easily	plot	data	for	you,	it	takes	in	matrices	to	it’s	a	ploLer	of	
course!	

plot(x, y, ’-o’)
i. NoIce,	it	connects	the	data	points	(marked	with	an	o)	for	you!	
ii. If	the	dimensions	of	x	and	y	do	not	agree,	it	will	give	you	an	error.	

ESE	150	–	Lab	3	 	 Page	� 	of	�5 18

ESE	150	–	Lab	03:	Data	Compression

5. Matrix	Math:	
a. You	can	mulIply	every	element	of	a	matrix	by	a	number	quite	easily,	try:	

2*test
i. This	command	won’t	change	the	matrix	test,	you	would	have	to	assign	it	to	

itself	or	a	different	matrix	if	you	wanted	that	to	happen:	
test=2*test

b. You	can	“transpose”	a	matrix	by	adding	an	apostrophe	a]er	the	matrix’s	name:	
test’

i. NoIce	this	makes	the	rows	the	columns!	
c. You	can	mulIple	two	matrices	together	(only	if	they	have	the	same	inner	

dimensions),	example:	
test3=test*test’

i. test	*	test	won’t	work	(that’s	2x3		*	2x3),	the	inner	dimensions	don’t	agree.	
ii. test	*	test’	will	work	(that’s	a	2x3	*		3x2),	the	inner	dimensions:	(3)	agree.	

6. Gekng	help	in	Matlab	
a. If	you	need	help	using	a	command	in	Matlab,	type	help	command.	Example:		

help linspace

7. Gekng	Help	outside	of	Matlab	
a. The	Matlab	website	(mathworks.com)	has	documentaIon	on	funcIons	and	syntax,	

such	as	for-loop	and	if	statements.	
b. O]en	the	easiest	way	to	get	informaIon	on	a	Matlab	funcIon	is	to	google	search	

Matlab	and	the	funcIon	itself.
c. Try	it	out:		Look	up	documentaIon	on	the	matlab	funcIon	tabulate.  

You	will	use	this	funcIon	during	the	lab.	

ESE	150	–	Lab	3	 	 Page	� 	of	�6 18

ESE	150	–	Lab	03:	Data	Compression

Gekng	Familiar	with	Matlab	Scripts	
• So	far,	we	have	been	typing	commands	into	the	command	window	to	see	what	Matlab	

does	with	the	various	commands.	
• However,	we	don’t	want	to	have	to	type	in	the	same	commands	manually	over	and	over.	
• To	solve	this	issue,	we	can	store	a	series	of	commands	in	something	called	a	script.	
• First,	let’s	create	a	simple	script	and	run	through	the	commands	one	by	one.	

o This	will	help	us	become	more	familiar	with	what	to	do	when	our	code	doesn’t	
work	in	the	way	we	want	(debugging).	

8. First,	let’s	create	a	Matlab	script!	
a. In	Matlab,	go	to	the	“Home”	tab,	click	on	the	“New”	buLon,	then	click	“Script”.	
b. You	will	now	see	a	blank	text	file	open,	called	“UnItled”.	
c. Type	the	following	code:	

d. Save	the	file	to	your	computer	as	“myFirstScript.m”.	
e. Take	a	moment	to	read	over	the	script	and	understand	what	it	does:	

i. We	are	creaIng	mulIple	variables	and,	over	the	course	of	the	script,	
changing	the	values	of	the	variables.	

ii. For	example,	the	value	of	the	variable	sum	starts	as	x,	then	we	add	y,	and	
finally	we	add	z.	

iii. In	the	end,	sum	=	x	+	y	+	z,	but	we	did	this	in	mulIple	steps	so	we	can	see	
how	sum	changes	over	Ime.	

iv. As	a	side	note,	the	clear	funcIon	deletes	all	variables	that	are	currently	in	
the	workspace.	

f. Now	let’s	run	the	script:	
i. In	the	command	window,	type	clear	to	remove	all	old	variables	
ii. In	the	editor	tab	at	the	top	of	the	Matlab	window,	click	“Run”.	Now,	your	

workspace	should	be	full	of	new	variables—these	are	the	final	values	a]er	
the	script	finishes.	

9. What	if	we	want	to	see	how	the	variables	change	as	our	program	runs?	

ESE	150	–	Lab	3	 	 Page	� 	of	�7 18

clear

x = 5
y = 10
z = 8

sum = x
sum = sum + y
sum = sum + z

myArr1 = [1 2 3 4; 5 6 7 8]
myArr2 = [5 3 7 4; 1 0 9 7]

myArr1 = myArr1 * 2
sumArr = myArr1 + myArr2

ESE	150	–	Lab	03:	Data	Compression

a. This	is	where	“debugging”	comes	in—we	can	look	closer	at	what	Matlab	is	doing	
with	our	code	to	see	if	there	is	a	line	where	we	are	making	an	error.	

b. To	debug	our	Matlab	code,	we	need	to	set	“breakpoints”	in	our	code.	
i. Breakpoints	are	just	parts	of	our	code	where	we	have	told	Matlab	to	“pause”	

running	and	give	us	a	chance	to	see	what	has	happened	so	far	
ii. Fortunately,	sekng	and	using	breakpoints	isn’t	too	hard!	
iii. To	set	a	breakpoint,	make	sure	you	have	saved	your	Matlab	script!	
iv. Then,	click	on	the	“—”	right	beside	the	number	of	the	line	of	code	you	want	

to	debug;	the	“—”	will	turn	into	a	red	dot.	
1. For	example,	here	I	have	set	a	breakpoint	at	line	7:	

� 	
2. Now,	when	I	hit	“Run”,	Matlab	will	stop	before	running	line	7.	

v. Your	turn:	set	a	breakpoint	at	the	line	“sum = x"—your	window	should	
look	like	mine,	but	your	line	number	might	be	different.	

c. Now	that	we’ve	set	a	breakpoint,	let’s	see	what	Matlab	does:	
i. First,	let’s	clear	the	workspace	by	typing	clear	in	the	command	window.	
ii. At	the	top	of	the	editor,	press	“Run”.	
iii. Matlab	should	stop	running	and	the	following	opIons	will	appear	at	the	top	

of	the	window:	

� 	

d. Now	that	we	opened	the	debugging	opIons,	let’s	“step”	through	each	line:	

ESE	150	–	Lab	3	 	 Page	� 	of	�8 18

ESE	150	–	Lab	03:	Data	Compression

i. Look	at	the	workspace—we	should	see	only	x,	y,	and	z.	
ii. NoIce	that	the	variable	sum	isn’t	there	yet—that’s	because	we	stopped	

before	running	the	line:	sum = x	
iii. Click	the	“Step”	buLon	at	the	top	of	the	window:	

1. Matlab	will	run	the	next	line	of	code.	
2. Now,	you	should	see	“sum”	in	the	workspace,	and	its	value	should	be	

5,	since	we	set	it	equal	to	x.	
iv. ConInue	to	click	“Step”	and	see	how	older	variables	change	over	Ime	and	

newer	variables	are	added	to	the	workspace.	
v. If	at	anyIme	you	want	to	stop	stepping	and	just	let	Matlab	finish	the	

program,	click	“ConInue”.	
1. If	there	are	no	more	breakpoints	in	your	code,	the	script	will	finish	

running	as	normal.	
2. If	there	is	another	breakpoint,	Matlab	will	again	offer	you	the	opIon	

to	step	through	the	code,	or	just	conInue.	
e. Debugging	will	be	very	useful	in	later	labs	that	use	Matlab,	so	if	you	have	any	

quesIons,	make	sure	to	ask	a	TA!	

ESE	150	–	Lab	3	 	 Page	� 	of	�9 18

ESE	150	–	Lab	03:	Data	Compression

10. The	following	3	examples	will	teach	you	how	to	write	scripts,	plot	figures,	and	print	data	to	a	
text	file	in	Matlab.		

a. Click	on	the	buLon	“New”	and	select	“Script”.	An	unItled	blank	script	will	appear	
above	the	Command	Window.		

b. Once	you	name	and	save	your	new	script,	you	should	see	the	file	appear	in	the	
“Current	Folder”	panel	(le]	most	panel	of	Matlab).	The	text	above	the	script	
displays	the	path	directory	and	current	working	environment.	

c. The	first	example	involves	creaIng	a	line	plot	for	a	single	line.		

i. In	Matlab,	all	variables	need	to	be	iniIalized.	Create	an	array	called	“x1”	that	
contains	100	zeros	as	starIng	values.	(Hint:	Use	the	zeros()	funcIon.		
Remember	you	can	lookup	informaIon	about	MATLAB	funcIons	[step	6	and	
7].)	

ii. Create	a	for-loop	that	loops	from	1	to	100.	(Hint:	it’s	probably	useful	to	see	an	
example	of	a	MATLAB	for	loop;	look	it	up	as	you	did	in	step	7.)		Use	the	mod()	
funcIon	to	determine	if	the	current	number	is	even	or	odd.	If	the	result	of	
the	mod()	funcIon	indicates	that	the	current	number	is	even,	assign	the	
current	number	to	“x1”	at	the	index	corresponding	to	the	current	number.	If	
the	result	of	the	mod()	funcIon	indicates	that	the	current	number	is	odd,	
assign	the	value	“0”	to	“x1”	at	the	index	corresponding	to	the	current	
number.		

iii. Plot	the	array	“x1”.	Save	or	take	a	screenshot	of	the	resulIng	plot.		

d. The	second	example	involves	plokng	a	sine	and	cosine	on	the	same	plot.		

i. Create	an	array	“x2”	that	contains	1000	values	between	(-2	*	pi)	and	(2	*	pi).	
(Hint:	Use	the	funcIon	linspace().)	

ii. Create	an	array	“y1”	that	takes	the	sin	of	“x2”	values.	

iii. Create	an	array	“y2”	that	takes	the	cosine	of	“x2”	values.	

1. While	you	can	do	this	with	a	for	loop;	a	useful	MATLAB	funcIon	for	
operaIons	like	this	is	arrayfun	(Hint:	again,	look	it	up).	

iv. Plot	“y1”	and	“y2”	(each	vs.	“x2”,	so	2	separate	curves)	on	the	same	graph.	
(Hint:	It	should	require	only	one	line	of	code.)	Add	the	command	“figure”	
before	your	new	plot	command	to	create	a	separate	window	from	the	
previous	example.	Save	or	take	a	screenshot	of	the	resulIng	plot.	

ESE	150	–	Lab	3	 	 Page	� 	of	�10 18

ESE	150	–	Lab	03:	Data	Compression

e. The	third	example	involves	prinIng	the	results	from	Example	2	(y1	and	y2)	to	a	text	
file.		

i. Here	is	the	general	code:		

Make	the	necessary	modificaIons	to	your	script	such	that	only	the	first	50	pairs	
are	printed	to	the	file.	Once	you	execute	the	code,	a	text	file	with	your	chosen	file	

name	should	appear	in	the	“Current	Folder”	panel.	The	text	file	and	script	should	
be	in	the	same	folder.	

11.In	lecture,	you	learned	about	Huffman	Coding.	

Watch	this	video	for	a	more	in-depth	overview	of	how	Huffman	Coding	Works:	

hLps://www.youtube.com/watch?v=ZdooBTdW5bM	

Read	this	arFcle	to	see	how	we	implement	this:		

hLp://nerdaholyc.blogspot.com/2014/01/a-simple-example-of-huffman-coding-on.html	

Prelab	Checklist:		

1) Matlab	Code	from	Step	10	

2) Plots	for	Example	1	and	Example	2	(10.c,	10.d)	

3) Text	File	from	Example	3	(10.e)		

ESE	150	–	Lab	3	 	 Page	� 	of	�11 18

% print to file

fid=fopen(‘file_name.txt’,'w');

fprintf(fid, '%f %f \n', [variable1 variable2 …]);

fclose(fid);

https://www.youtube.com/watch?v=ZdooBTdW5bM
http://nerdaholyc.blogspot.com/2014/01/a-simple-example-of-huffman-coding-on.html

ESE	150	–	Lab	03:	Data	Compression

Lab	Procedure:	
Lab	–	Sec3on	1:	Impor3ng	Sampled	Data	into	Matlab	
• In	this	secIon	you’ll	learn	how	to	import	data	into	Matlab.	
• You’ll	use	your	skills	from	the	prelab	to	manipulate	and	plot	the	data	in	Matlab.	

You	can	find	the	dat	samples	here:	hLps://docs.google.com/spreadsheets/d/1RTCO_i-
NSGxSkYASK8OzllY0IooaQrV5Vx7IwWpppps/edit?usp=sharing	

1. From	the	sampled	data	given	to	you,	highlight	the	800	samples	for	only	the	triangle	wave,	
and	“copy”	them	(using	<ctrl>	C).	

2. In	Matlab	create	an	empty	matrix,	named	“samples_triangle”	by	typing	the	following:	

samples_triangle=[]

3. In	the	“Workspace”	pane,	click	on	your	newly	created	samples_triangle	matrix	

a. This	will	bring	up	an	editor,	that	looks	a	liLle	like	a	spreadsheet.	

4. Paste	your	spreadsheet	data	into	Matlab:	

a. RIGHT	click	on	the	very	first	square	at	the	top	le],	row	1,	column	1.	

b. Choose	“Paste	Excel	Data”;	once	pasted	close	the	variable	editor.	

c. NoIce	in	the	“workspace”	pane,	samples_triangle	is	now	an	800x1	dimension	
matrix.	

5. Using	what	you’ve	learned	from	the	prelab,	plot	your	samples	in	Matlab:	

a. Create	a	new	matrix	called:		samples_triangle_voltage.	

b. Have	Matlab	create	a	vector	that	represents	the	“Imes”	the	samples	were	taken.	

c. Plot	Voltage	vs.	Time.	

d. Use	the	“help”	tool	for	the	following	commands:	Itle,	xlabel,	ylabel	to	add	
appropriate	labels	to	your	plot…	(e.g.	–	300	Hz	Triangle	Wave	is	a	nice	Itle!).	

e. Use	the	magnifying	glass	in	the	plot	window	to	show	only	4	cycles	of	your	wave	
starIng	at	Ime	0.	

f. Take	a	screenshot	of	the	plot	for	submission.	

6. Repeat	steps	1-5	for	the	square	wave	(create	a	matrix	named:	samples_square)	

NOTE:	you	can	repeat	commands	in	Matlab	by	pressing	the	UP	arrow	

7. Call	over	a	TA	to	check	your	plots.	

ESE	150	–	Lab	3	 	 Page	� 	of	�12 18

https://docs.google.com/spreadsheets/d/1RTCO_i-NSGxSkYASK8OzllY0IooaQrV5Vx7IwWpppps/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1RTCO_i-NSGxSkYASK8OzllY0IooaQrV5Vx7IwWpppps/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1RTCO_i-NSGxSkYASK8OzllY0IooaQrV5Vx7IwWpppps/edit?usp=sharing

ESE	150	–	Lab	03:	Data	Compression

Lab	–	Sec3on	2:	Variable	Group	Lossless	Compression:	Huffman	Coding	
• Recall	the	Huffman	coding	algorithm	is	a	lossless	and	variable	group	size	algorithm.	
• The	basic	idea	of	the	Huffman	algorithm	is	to	first	analyze	the	data	one	wishes	to	compress	

and	determine	the	frequency	of	occurrence	of	all	the	symbols	one	wishes	to	compress.	
• The	more	likely	a	parIcular	symbol	occurs	in	your	dataset,	the	shorter	the	binary	code	is	

that	will	represent	that	symbol	in	its	compressed	form.	
• A]er	the	frequency	of	each	“symbol”	we	want	to	compress	is	determined,	one	encodes	(or	

compresses)	the	data	by	replacing	each	symbol	with	a	more	efficient	representaIon	of	that	
symbol.		These	more	efficient	symbols	are	unique.	

• We’ll	use	Matlab	to	help	us	apply	the	Huffman	coding	algorithm	to	our	samples.	
• We’re	going	to	start	by	applying	the	Huffman	coding	algorithm	to	a	small	set	of	data,	before	

we	apply	it	to	our	samples,	so	you	can	understand	how	it	works!	

1. Begin	in	Matlab	by	creaIng	a	vector	with	only	10	samples	as	follows:	
my_samples = [0; 1; 2; 2; 3; 5; 5; 5; 1023; 1023]

a. We	can	see	that	“5”	occurs	most	frequently	(3/10	of	the	Ime…30%	of	the	Ime).	
b. We	can	see	that	“2”	occurs	20%	of	the	Ime,	same	for	“1023”.	
c. 0	and	1	are	the	least	frequently	occurring.	
d. For	Huffman,	“5”	should	receive	the	least	bits	since	it	occurs	most	frequently.	
e. Now,	how	do	we	get	Matlab	to	analyze	this	for	us?	

2. Use	Matlab’s	tabulate()	funcIon	to	analyze	the	frequency	of	occurrence	of	each	symbol		
a. Note,	our	“symbols”	are:	0,	1,	2,	…	1023	(unlike	lecture,	where	our	symbols	were	

a,b,c)	
a=tabulate(my_samples)

b. Look	at	what	came	out,	a	6x3	matrix	(named	a).		
i. The	first	column	is	our	symbol,	the	second	column	is	a	count	of	how	many	

Imes	it	occurred,	the	3rd	column	is	percentage	of	occurrence!	
3. Extract	just	the	probability	of	each	symbol’s	occurrence	(the	3rd	column):	

prob = a(:,3)
4. Normalize	those	probabiliIes	to	be	out	of	1	(instead	of	out	of	100%):	

prob = prob/100
5. Extract	the	“unique”	symbols	in	your	dataset	(0,	1,	3,	5,	1023):	

symbols = a(:,1)

6. Build	the	“Huffman	dicIonary”	for	the	symbols	in	your	dataset	according	to	their	probability	
of	occurrence:	

dict = huffmandict (symbols,prob)

a. Matlab	essenIally	creates	a	binary	tree	for	your	dataset,	but	it’s	in	matrix	form.	
b. This	funcIon	“huffmandict()”	actually	builds	the	Huffman	dicIonary,	think	of	the	

dicIonary	as	a	table	you	can	lookup	the	binary	number	for	a	given	symbol.			

7. Let’s	examine	the	Huffman	dicIonary:	
a. Double	click	“dict”	in	the	workspace.	
b. Let’s	look	up	the	symbol	“0”	in	the	dicIonary:	

ESE	150	–	Lab	3	 	 Page	� 	of	�13 18

ESE	150	–	Lab	03:	Data	Compression

i. Look	in	Row	1.	In	the	first	column,	you	will	see	0,	the	symbol	that	we	
compressed.	In	the	second	column,	you	will	see	a	matrix	of	four	numbers 
([0,	0,	0,	1])	that	represents	the	number	0.	

ii. This	means	that	0	is	represented	by	the	binary	number	0	0	0	1	a]er	Huffman	
compression	is	performed.	

c. In	your	lab	report,	write	out	the	binary	number	that	will	be	used	for	each	symbol	in	
“my_samples”.	

8. Now	let’s	use	the	dicIonary	to	compress	the	samples:	

samples_compressed = huffmanenco(my_samples,dict)

a. Huffmanenco()	examines	each	of	your	samples,	looks	them	up	in	the	dicIonary,	and	
replaces	them	with	their	binary	equivalent.	

b. NoIce,	the	first	four	numbers	in	the	compressed	data.		They	are	0,	0,	0,	1—that	
represents	the	Huffman	encoded	version	of	0	that	we	saw	in	the	dicIonary!	

c. Can	you	manually	decode	the	compressed	data	using	the	dicIonary?		It	must	be	a	
perfect	match	to	your	samples.	

d. Lastly,	how	many	bits	(0s	and	1s)	does	your	compressed	data	need?		(HINT:	look	at	
the	matrix	size	of	“samples_compressed”	in	the	workspace!)	

9. Let’s	try	decompressing…going	backwards:	

samples_decompressed = huffmandeco (samples_compressed, dict)

a. Huffmandeco()	just	reverses	the	process	

b. samples_decompressed	should	be	equal	to	your	my_samples	matrix!	

c. Verify	these	two	matrices	are	equal	by	using	the	funcIon	isequal()	(type	help	to	
learn	how	to	use	it).	

10. We	had	to	type	a	lot	of	commands	to	get	the	data	compressed—let’s	make	that	automaIc:	
a. We	will	be	making	our	own	funcIon	in	Matlab!	
b. Click	on	the	“New	Script”	buLon	at	the	top	of	the	Matlab	screen.	
c. Enter	all	the	commands	you	just	used	above	in	steps	2-8	(skip	step	7).	
d. At	the	very	top	of	the	file	add	a	line	like	this:	

function [samples_compressed, dict] = compress_huff(my_samples)

e. The	name	of	our	funcIon	is	“compress_huff”.	
f. It	takes	as	input	a	matrix:	my_samples	

ESE	150	–	Lab	3	 	 Page	� 	of	�14 18

ESE	150	–	Lab	03:	Data	Compression

g. It	returns	two	output	matrices:	samples_compressed	and	dict,	which	is	the	
dicIonary	used	to	compress	the	samples.	

i. MATLAB	funcIons	can	return	mulIple	values;	this	may	be	a	feature	you	
haven’t	seen	before.	

ii. By	assigning	the	variables	used	in	the	funcIon	return	signature	(that’s	the	
[samples_compressed, dict]	in	this	case),	you	are	returning	them.	

iii. As	before,	search	for	“MATLAB	funcIon”	to	see	documentaIon	and	
examples.	

h. At	the	very	end	of	the	file,	add	the	following	line:	

end

i. Lastly,	save	the	file	with	the	exact	same	name	as	your	funcIon:	compress_huff.m	
j. Now,	whenever	we	call	the	funcIon,	we	will	receive	two	matrices	back—our	

compressed	data	(consisIng	of	1s	and	0s)	and	the	dicIonary	used	to	compress	the	
original	data.	

k. How	do	you	call	your	funcIon?		From	the	command	window,	type:	

[your_compressed_values, your_dictionary] =  
compress_huff(your_matrix_to_compress_here)

	 all	on	one	line.	

	 For	example,	if	you	are	compressing	square	wave	data,	you	might	do	the	following:	
[compressed_sq, dict_sq] = compress_huff(samples_square_voltage)

	 This	will	create	two	Matlab	matrices—one	called	compressed_sq,	containing	the	
Huffman	encoded	data,	and	another	called	dict_sq,	containing	the	Huffman	dicIonary	for	the	
square	data.	

ESE	150	–	Lab	3	 	 Page	� 	of	�15 18

ESE	150	–	Lab	03:	Data	Compression

Lab	–	Sec3on	3:	Compressing	Wave	Data	with	Huffman		
• In	this	secIon	you’ll	apply	your	compression	funcIon	to	the	two	sampled	waveforms	given	

to	you.	

1. Now	that	you	have	a	funcIon	that	will	compress	your	data,	try	it	out	on	the	samples!	
a. Run	your	compress_huff	funcIon	on	your	samples_triangle_voltage	and	

samples_square_voltage	matrices.	
2. Calculate	the	compression	raIo	(binary	bits	out	/	binary	bits	in)	for	each	sample	set:	square	

and	triangle	
a. In	our	case,	each	voltage	sample	value	takes	10	bits.	
b. Include	your	two	compression	raIos	in	your	lab	writeup.	
c. Which	one	gets	the	best	raFo?		Why	do	you	think	that	is?	

i. Hint:	run	tabulate()	on	the	voltage	samples	for	each	set	and	look	at	the	
frequency	distribuIon.	

d. Look	at	the	frequencies	and	dicIonary.	With	the	frequencies,	use	Shannon	
Entropy	calculaIon	to	determine	the	ideal	number	of	bits	for	the	most	frequent	and	
least	frequent	symbols	in	the	square	wave.		Compare	that	to	the	bits	assigned	by	in	the	
dicIonary.	

3. Now,	use	the	Huffman	dicIonary	returned	by	your	compress_huff	funcIon,	along	with	your	
compressed	data,	to	decompress	the	waves:	

a. Remember,	we	used	a	command	to	decompress	the	compressed	data.	
b. Also,	the	isequal	funcIon	can	help	you	compare	matrices.	
c. Report	whether	your	decompressed	data	matched	your	original	samples.	

4. Before	leaving	lab,	demonstrate	your	compression/decompression	to	a	TA.		This	is	the	Lab	
Exit	Check-off.	

5. Run	one	last	experiment.		In	the	command	window,	create	a	Huffman	dicIonary	for	the	
triangle	wave.		Now,	apply	that	dicIonary	to	the	square	wave	samples…does	it	do	as	good	a	
job	at	compressing	the	data?	

a. What	does	this	tell	you	about	the	Huffman	dicIonary?		Is	a	generic	one	useful?	
b. It’s	possible	this	will	fail	in	encoding.		If	so,	why	does	it	fail?	

6. Make	sure	all	Matlab	code,	graphs,	and	data	collected	are	accessible	to	both	partners.	

ESE	150	–	Lab	3	 	 Page	� 	of	�16 18

ESE	150	–	Lab	03:	Data	Compression

Postlab:	Ques3ons	

1. How	effecIve	would	Huffman	Compression	be	for	each	of	the	following.		Explain	why?	
(in	some	cases	the	the	answer	depends	on	personal	habits,	so	your	explanaIon	is	central	
to	what	the	“correct”	answer	is.)	

a. World	Cup	Soccer	(Football	to	non-Americans)	scores	

b. NFL	(American	Football)	scores	

c. What	you	pay	for	lunch	each	day	

d. Ambient	outdoor	temperature	when	you	arrive	at	SEAS	quad	each	weekday	

e. Hours	of	sleep	you	get	each	night	(quanIzed	to	whole	hours)	

f. Digits	of	π	(pi)	

g. Digits	of	sqrt(2)	

2. Beyond	audio,	what	are	applicaIons	where	Huffman	Coding	is	applicable	and	likely	to	be	
effecIve?	[at	least	3]	

3. What	are	applicaIons	where	Huffman	Coding	is	not	likely	to	be	effecIve?	[at	least	3]	

4. Compute	the	Shannon	entropy	for	the	triangle	wave.		You	can	do	your	calculaIons	using	
any	of	three	ways:	by	hand,	using	MATLAB,	or	using	a	spreadsheet.	

HOW	TO	TURN	IN	THE	LAB	

• Upload	a	PDF	document	to	canvas	containing:	
o All	items	in	the	Prelab	Checklist	
o Matlab	code	for	your	compress_huff	funcIon	
o Answers	to	the	following	quesIons	from	the	lab	secIons:		

▪ SecIon	2,	QuesIon	7c	
▪ SecIon	2,	QuesIon	8d	
▪ SecIon	3,	QuesIon	2b	
▪ SecIon	3,	QuesIon	2c	
▪ SecIon	3,	QuesIon	2d	
▪ SecIon	3,	QuesIon	5a	
▪ SecIon	3,	QuesIon	5b	

o Plots	for	voltage	samples	(SecIon	1—for	triangle	and	square)	
o Answers	to	postlab	quesIons	
o Label	the	secIons	and	tell	us	what	quesIons	you	are	answering!	

ESE	150	–	Lab	3	 	 Page	� 	of	�17 18

ESE	150	–	Lab	03:	Data	Compression

ESE	150	–	Lab	3	 	 Page	� 	of	�18 18

