
ESE	150	–	Lab	09:	Opera1ng	System	Basics

LAB	09	

Today’s	Lab	has	the	following	objec1ves:	
1. Start	using	Linux	
2. Learn	some	of	the	basics	of	process	management	on	the	Linux	Opera1ng	System	
3. See	process	virtualiza1on	in	ac1on	

Background:	

OPERATING	SYSTEMS	

We	learned	in	lecture	that	a	CPU	can	really	only	execute	one	task	or	instruc1on	(like	ADD	or	SUBTRACT,	
etc)	at	a	1me.		The	Opera1ng	System	is	a	program	that	runs	on	a	CPU	with	the	job	of	managing	the	CPU’s	
1me.		It	schedules	programs	that	user’s	would	like	run	for	1me	on	the	CPU,	essen1ally	its	main	job	is	to	
keep	the	CPU	busy.		Another	aspect	of	the	OS	is	to	protect	access	to	the	hardware	that	surrounds	the	
CPU	(like	input	and	output	devices	–	keyboards,	mice,	etc.)	so	that	programs	don’t	have	direct	access	to	
the	hardware,	but	instead	ask	the	OS	for	permission	to	access	it.		This	also	lends	itself	to	“virtualizing”	
the	CPU	and	its	hardware	so	that	each	program	that	runs	on	the	CPU	believes	it	is	the	only	program	
running	on	the	CPU	at	any	given	1me.	

Before	the	personal	computer	existed,	before	Mac	OS	and	Windows	came	into	being,	an	opera1ng	
system	named	UNIX	was	wri\en	to	manage	large	computers	at	AT&T	Bell	Laboratories	in	the	1970s	that	
became	a	model	for	modern	opera1ng	systems	(like	Windows	and	Mac	OSX).		In	the	1990’s	an	opera1ng	
system	named	Linux	was	invented	modeled	very	heavily	on	the	UNIX	opera1ng	system.		Today	Linux	and	
its	decedents	(like	the	Android	opera1ng	system)	is	the	most	widely	used	and	distributed	opera1ng	
system	of	all	1me.		For	that	reason	it	is	the	focus	of	today’s	lab	as	we	a\empt	to	learn	some	basics	about	
Opera1ng	Systems.	

The	Linux	opera1ng	system	is	organized	like	a	NUT	with	many	layers!		Inside	is	something	called	the	
“Kernel”	and	on	the	outside	is	something	called	the	“Shell”,	both	of	these	are	programs,	and	they	have	
different	func1ons.		The	Kernel	is	the	lowest	level	and	is	the	part	of	the	OS	that	deals	directly	with	the	
hardware:	CPU,	Memory,	I/O	Devices	(keyboard,	hard	drive,	etc).		If	an	applica1on	would	like	to	work	
with	the	CPU,	it	goes	through	the	Kernel,	obtaining	permission	in	a	sense,	to	do	so.			
	

ESE150	–	Lab	09	 	 	Page	� 	of	� 	1 19

ESE	150	–	Lab	09:	Opera1ng	System	Basics

The	“Shell”	is	an	applica1on	that	allows	users	to	type	in	commands	to	work	with	the	opera1ng	system.		
While	the	user	can’t	interact	directly	with	the	Kernel,	it	can	go	through	the	shell	to	gain	access	to	the	
CPU.		Today’s	Linux	Opera1ng	Systems	typically	include	a	GUI,	which	is	also	an	applica1on	that	allows	
users	to	interact	with	the	OS	through	graphical	means.		While	a	GUI	has	its	uses,	working	with	the	Linux	
shell	can	be	a	bit	more	powerful,	and	it	is	the	level	at	which	we	will	work	today.			

[Op1onal:	For	a	fanciful	descrip1on	of	using	the	shell	rather	than	a	GUI,	you	can	see	Neal	Stephenson’s	
“In	the	beginning	was	the	command	line…”	essay	h\ps://smorgasborg.artlung.com/
C_R_Y_P_T_O_N_O_M_I_C_O_N.shtml]	

The	SHELL	and	a	process	

In	the	shell,	we	can	start	and	stop	programs,	interact	with	the	filesystem	(to	copy/delete/create	files),	
interact	with	the	network,	and	I/O	devices	as	well	(through	the	kernel).		The	shell	requires	us	to	
remember	basic	commands	to	do	all	of	these	things	as	there	is	no	GUI;	everything	must	be	typed	into	
the	shell	to	get	the	OS	to	work	with	us.	

Recall	that	ul1mately,	we	want	a	CPU	to	run	a	program	(a	set	of	instruc1ons	to	accomplish	some	task	–	
say	encode	or	playback	an	MP3	file!).		When	a	program	is	actually	running	on	an	opera1ng	system	it	is	
typically	referred	to	as	a	“process”	(aka	a	running	program).		When	we	start	or	stop	a	process	we	are	
asking	the	shell	to	perform	a	“job”	for	us,	so	processes	are	some1mes	referred	to	as	a	“job”	in	Linux.		
One	of	the	main	roles	of	the	opera1ng	system	is	to	give	all	of	the	“processes”	a	user	wishes	to	run	“at	
the	same	1me”	access	to	the	CPU	and	the	hardware	connected	to	the	machine.		This	delicate	balancing	
act,	onen	referred	to	as	“scheduling”,	is	one	of	the	most	important	jobs	of	an	opera1ng	system,	and	
typically	this	scheduling	task	is	handled	in	the	kernel	of	the	OS.		So	a	user	starts	a	“job”	or	process	in	the	
shell,	and	then	the	kernel	is	responsible	for	leong	it	run	on	the	CPU	and	leong	all	the	other	processes	
share	1me	on	the	CPU.		We’ll	inves1gate	a	bit	of	this	in	today’s	lab	so	you	get	a	feel	for	the	main	role	of	
the	opera1ng	system.	

Some	Useful	Resources	

Here	are	some	useful	links	that	list	and	explain	common	Linux	commands.	Feel	free	to	review	the	
websites	to	get	more	experience	opera1ng	in	the	Linux	environment.		

1. h\ps://maker.pro/educa1on/basic-linux-commands-for-beginners		
a. Provides	more	background	and	lists	common	commands.	

2. h\ps://www.pcsteps.com/5010-basic-linux-commands-terminal/	
a. Provides	useful	1ps	and	tricks	for	using	Linux	(i.e.	Copy	and	paste).	Breaks	down	

commands	by	tasks.			

	  

ESE150	–	Lab	09	 	 	Page	� 	of	� 	2 19

https://smorgasborg.artlung.com/C_R_Y_P_T_O_N_O_M_I_C_O_N.shtml
https://smorgasborg.artlung.com/C_R_Y_P_T_O_N_O_M_I_C_O_N.shtml
https://maker.pro/education/basic-linux-commands-for-beginners
https://www.pcsteps.com/5010-basic-linux-commands-terminal/

ESE	150	–	Lab	09:	Opera1ng	System	Basics

Prelab:	

Part	1:	SSH	into	ENIAC

ENIAC	is	the	name	of	the	Linux	server	running	in	SEAS	that	all	engineering	students	have	access	to.	The	S	
drive	that	you	are	already	familiar	with	is	the	home	directory	of	your	account	on	ENIAC.	To	remotely	
access	ENIAC	from	a	personal	computer,	we	will	use	SSH:	Secure	Socket	Shell.	You	can	read	more	about	
SSH	and	its	history	here:	h\p://docstore.mik.ua/orelly/networking_2ndEd/ssh/ch01_01.htm

You	will	need	to	setup	the	Penn	VPN	before	you	can	connect	to	ENIAC	with	the	following	direc1ons.		See:	
h\ps://www.isc.upenn.edu/how-to/university-vpn-geong-started-guide

SSH	is	onen	run	from	a	unix-based	command	line.	An	SSH	client	is	included	by	default	on	MacOS,	Linux,	
and	Windows	10	(as	of	2018).	You	can	use	the	following	instruc1ons	to	log	into	the	ENIAC.	If	you	are	
running	an	older	version	of	Windows,	there	are	instruc1ons	for	how	to	install	an	SSH	client	below.	

1.Open	a	terminal	window	(make	sure	to	use	PowerShell	on	Windows,	since	some	
commands	won’t	work	in	Command	Prompt)	
2.Type	the	following	command,	replacing	PENNKEY	with	your	PennKey	

ssh PENNKEY@eniac.seas.upenn.edu	
3.If	prompted,	type	‘y’	(or	‘yes’	on	Windows)	to	add	to	known	hosts.	When	prompted,	enter	your	
password.	
4.You	should	see	a	welcome	message:	

5.Type	exit	to	logout.	

exit

6.You	can	copy	data	back	and	forth	from	windows	using	scp.	

a.Open	a	console	window	on	your	laptop.	

The	scp command	takes	in	two	space-separated	arguments:	the	source	and	the	
destination.

Copy	from	eniac:	

scp PENNKEY@eniac.seas.upenn.edu:~ese150/lab9/pi.c pi.c

b.Look	at	the	Qile	you	downloaded	(use	Ctrl/Cmd	+	C	to	exit):	

more pi.c

c.Copy	the	Qile	back	to	your	account	on	eniac:	

ESE150	–	Lab	09	 	 	Page	� 	of	� 	3 19

http://docstore.mik.ua/orelly/networking_2ndEd/ssh/ch01_01.htm
https://www.isc.upenn.edu/how-to/university-vpn-getting-started-guide

ESE	150	–	Lab	09:	Opera1ng	System	Basics

scp pi.c PENNKEY@eniac.seas.upenn.edu:

 Note:	there	is	a	colon	at	the	end	of	the	command.		It	is	important.	It	is	separa1ng	the	
machine	name	(eniac.seas.upenn.edu)	from	the	path,	which	is	empty	to	denote	the	top	level	of	your	
personal	home	directory.	

d.Ssh	back	into	eniac	and	verify	you	copied	the	Qile	into	your	personal	directory	on	
eniac:	

ls (you	should	see	the	filename	sec1on1.v	printed	out)	

more pi.c

Older	versions	of	Windows	

If	your	personal	computer	is	running	an	older	version	of	Windows,	there	are	lots	of	SSH	clients	that	are	
easy	to	download	and	run.	A	popular	one	is	called	PuTTY:		

1.Download	PuTTY	from	their	website:	http://www.chiark.greenend.org.uk/~sgtatham/putty/
download.html		

a.Under	“Package	Qiles”	select	the	“MSI	(‘Windows	Installer’)”	appropriate	for	your	OS	(most	
likely	64	bit).		

b.This	will	install	all	of	the	PuTTY	utilities,	but	if	you	just	want	what	you	need	for	this	lab,	
you	can	choose	just	putty.exe	and	pscp.exe	in	the	“Alternative	binary	Qiles”	section.	
2.Open	the	putty.exe	Qile	once	the	download	is	complete.	
3.Enter	the	hostname	in	the	form	PENNKEY@eniac.seas.upenn.edu,	replacing	it	with	your	actual	
PennKey.	
4.Select	“Open.”	If	prompted,	select	‘Yes’	on	the	popup,	and	then	enter	your	password.	
5.You	should	see	the	welcome	message:	
6.Now	you	have	remote	access	to	the	ENIAC	computer.	
7.Type	exit	to	logout:	

	 	 exit	

8.To	copy	Qiles	with	scp,	you	can	follow	the	steps	in	the	previous	section	(step	6),	but	use	the	
pscp	command	instead	of	scp.	

For	this	lab	we	will	be	working	on	both	eniac	and	speclab,	which	is	another	server	at	Penn	that	provides	
us	a	greater	ability	to	run	long	programs	than	eniac.		In	order	to	ssh	into	speclab,	first	ssh	into	eniac	as	
you	did	in	this	part.		Then,	type	ssh	PENNKEY@speclab.seas.upenn.edu	into	the	eniac	session.		This	will	
forward	your	ssh	session	through	eniac	to	a	speclab	machine.			

VERY	IMPORTANT	NOTE:	speclab	is	not	a	single	machine,	rather	it	is	an	alias	for	a	group	of	machines	all	
running	in	similar	configura1ons.		When	you	ssh	into	speclab	this	will	send	you	to	a	specific	speclab	
machine,	for	example	spec10.		For	a	number	of	parts	in	this	lab	you	will	have	to	have	two	ssh	terminals	
accessing	the	same	machine	at	the	same	1me.		To	do	this,	open	a	new	terminal	window	(or	use	pu\y)	on	

ESE150	–	Lab	09	 	 	Page	� 	of	� 	4 19

mailto:PENNKEY@eniac.seas.upenn.edu
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html
http://www.chiark.greenend.org.uk/~sgtatham/putty/download.html

ESE	150	–	Lab	09:	Opera1ng	System	Basics

your	local	machine	and	ssh	into	eniac	again.		From	there,	note	down	the	specific	speclab	machine	your	
first	window	is	accessing	and	in	the	second	window	type	ssh	PENNKEY@spec##.seas.upenn.edu	filling	in	
##	with	the	number	corresponding	to	the	machine	your	first	ssh	session	is	accessing.		Many	parts	of	the	
lab	WILL	NOT	WORK	if	you	do	not	access	the	same	machine	in	both	ssh	windows.	

Part	2:	WriHng,	compiling,	and	monitoring	a	small	C	program	
• Learn	the	structure	of	a	basic	C	program	
• Learn	about	Linux	processes	and	use	a	basic	tool	to	monitor	them	called:	ps	
• For	this	sec1on,	you	should	run	your	code	on	eniac,	not	speclab	

This	sec1on	assumes	you	have	read	the	background	up	above.		If	you	haven’t	please	do	now!		

1. ssh	into	eniac	(as	you	did	in	prelab).	
2. Create	a	folder	on	the	filesystem	and	change:	

a. At	the	“prompt”	type	in	the	following	commands	to	create	a	folder	called	
ese150_lab9	and	then	a	subfolder	within	it	called	ex1	

mkdir ese150_lab9
 cd ese150_lab9
 mkdir ex1
 cd ex1
3. Use	the	“nano”	editor	to	create	a	simple	C	program	

a. At	the	prompt,	type	in	the	following	command	to	create	a	new	file	called	ex1.c:	
nano ex1.c

b. Type	in	the	following	C	program	to	the	editor:	

#include <stdio.h>

int main () {

 char name[50] ;

 printf ("Please enter your name: ") ;
 scanf ("%s", name) ;
 printf ("Welcome to my program %s \n", name) ;
}

c. Once	you	have	entered	it	all,	press	<ctrl>	X,		

i. Answer	“Y”	to	the	ques1on.	

ii.Keep	the	file	name	the	same	(ex1.c)	and	press	<enter>	

iii.Your	file	will	now	be	saved	to	the	filesystem.	

4. Compile	your	new	C-program	as	follows:	

ESE150	–	Lab	09	 	 	Page	� 	of	� 	5 19

ESE	150	–	Lab	09:	Opera1ng	System	Basics

a. Type	in	the	following	command:	

gcc ex1.c –o ex1

b. This	invokes	a	“compiler”	which	converts	your	program	wri\en	in	the	C-language	into	the	
Assembly	and	machine	code	that	the	computer	you	are	working	on	truly	understands.		
When	it	is	complete,	it	will	create	a	file	called:	“ex1”	that	you	can	run!	

5. Run	your	C-program	as	follows:	

a. Type	in	the	following	command:	

./ex1

i. If	you	get	an	error	saying	“Permission	Denied,”	run	the	command:	 
chmod +x ex1	

b. Congratula1ons,	you’ve	just	run	your	first	“process”	on	the	Linux	OS.	

c. Submit	your	program	as	part	of	the	lab.	

6. Let’s	examine	our	process	in	some	greater	detail:	

a. Open	up	another	terminal	window	(ssh	in	again,	as	in	Part	I).	

b. Posi1on	both	terminal	windows	next	to	one	another	(so	you	can	see	what	the	other	window	
is	doing).	

c. In	your	original	terminal	window,	run	your	program	again	(as	in	step	4).	

i. BUT	DON’T	type	in	your	name.	

ii. Let	the	program	“wait”	for	your	input	while	we	examine	the	process.	

d. In	the	new	terminal	window,	type	in	the	following	command:	

ps -F –u PENNKEY

e. This	command	will	output	a	lis1ng	similar	to	this:	

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

tfarmer 10089 0.0 0.0 16988 6640 pts/436 Ss 20:58 0:00 -bash

tfarmer 10432 0.0 0.0 16888 6388 pts/445 Ss 22:14 0:00 -bash

tfarmer 11372 0.0 0.0 4072 652 pts/460 S+ 22:15 0:00 ./ex1

If	it	doesn’t	show	the	STAT	column,	use:	
env PS_FORMAT=DefBSD ps -u PENNKEY

ESE150	–	Lab	09	 	 	Page	� 	of	� 	6 19

ESE	150	–	Lab	09:	Opera1ng	System	Basics

The	“env	PS_FORMAT=DefBSD”	prefix	tells	the	command	you	want	a	par1cular	format	for	
the	output.	

f. This	command	“ps”	shows	you	all	the	programs	running	on	the	machine	you’re	working	on	
that	you	have	launched.		Examine	the	“command”	column	and	look	in	your	list	for	“./
ex1”	(that’s	the	process	you	have	launched	in	the	other	shell	window).	

g. Look	first	at	the	number	under	the	“PID”	column.		This	number	is	called	the	process	ID.		
When	a	program	becomes	a	process	and	is	run	by	the	OS,	it	is	assigned	a	unique	process	ID.		
Once	the	process	ends,	the	number	may	be	reused,	but	while	it’s	running,	the	number	is	
unique.		Write	down	the	process	ID		of	your	“ex1”	process	(in	my	example	that’s	11372).	

h. Next,	examine	the	“STAT”	field	that	is	the	state	of	your	process	at	the	1me	when	you	ran	the	
“ps”	command.		A	process	can	have	the	following	statuses	on	a	Linux	system:	

D uninterruptible sleep (usually IO)
R running or runnable (on run queue)
S interruptible sleep (waiting for an event to complete)
T stopped, either by a job control signal or because it is being traced
W paging (not valid since the 2.6.xx kernel)
X dead (should never be seen)
Z defunct ("zombie") process, terminated but not reaped by its parent

i. The	above	list	may	also	be	combined	with	the	following:	

< high-priority (not nice to other users)
N low-priority (nice to other users)
L has pages locked into memory (for real-time and custom IO)
s is a session leader
l is multi-threaded (using CLONE_THREAD, like NPTL pthreads do)
+ is in the foreground process group

j. In	our	example,	your	process	will	have	the	state:	“S+”	meaning	that	the	process	appears	to	
be	sleeping	(meaning	that	it’s	not	asking	the	CPU	to	compute	anything	on	its	behalf,	instead	
it’s	wai8ng	for	the	user	to	enter	their	name!).		But	it’s	in	what’s	known	as	“interrup1ble”	
sleep.		As	discussed	in	lecture,	if	the	OS	needed	to	perform	another	task,	it	could	“suspend”	
your	“ex1”	process	and	switch	over	to	another	one	that	needs	some	1me	on	the	CPU.		The	
“+”	symbol	next	to	the	“S”	indicates	that	the	process	is	running	in	the	shell	in	the	
foreground,	as	opposed	to	the	background	(imagine	a	program	like	a	defragmenter	running	
in	the	background).	

k. Recall	that	we	started	our	program	in	the	shell.		In	Linux,	all	processes	are	“started”	by	
another	process.		We	can	see	which	“process”	started	“ex1”	by	running	“ps”	in	the	following	
way:	

ps -f -o pid,args --forest

(Note:	“pid,args”	should	be	the	literal	characters.		This	is	not	something	you	should	be	
subs1tu1ng	with	numbers	from	your	process	id.)	

ESE150	–	Lab	09	 	 	Page	� 	of	� 	7 19

ESE	150	–	Lab	09:	Opera1ng	System	Basics

l. This	will	output	a	“process	hierarchy”	or	“tree”	something	like	the	following:	

 PID COMMAND
35640 -bash
11372 _ ./ex1

(You	will	likely	see	a	second	bash	shell.		It’s	a	tree,	so	there	can	be	many	leaves	if	you	have	
many	things	running.)	

m. This	tells	us	that	the	“parent”	process	(the	one	that	started	my	“ex1”)	has	the	process	ID:	
35640,	and	it	also	tells	me	it	was	a	“bash”	shell	that	started	it.		Which	makes	sense,	the	shell	
we’re	running	(bash)	is	itself	a	process.		A	“child”	of	that	process	is	my	program:	ex1	

n. When	the	Linux	OS	is	given	control	over	the	CPU,	there	is	a	single	user	that	runs	all	the	
programs	(like	star1ng	up	the	GUI,	turning	on	the	network,	etc),	called	“root.”		The	user	
“root”	is	the	superuser	of	the	system	(the	all	powerful	administrator).		Root	basically	is	the	
opera1ng	system	itself!		If	you	type	in	command:	
ps –fu root

You’ll	see	all	the	processes	that	“root”	is	running	right	now.		In	fact,	you	can	see	the	
processes	started	by	“all”	the	users	on	a	Linux	system	by	typing	in	ps	-au	

You	can	scroll	back	up	and	look	for	process	“1”	that’s	the	first	process	the	OS	runs	when	it	
first	comes	on.		You	can	learn	a	lot	about	Linux	if	you	follow	this	path	of	how	programs	are	
started!	

o. Submit	a	screenshot	of	your	program	running	(when	you	used	ps)	&	EXPLAIN	what	your	
showing,	e.g.	what	process	started	your	process,	etc.	

7. Sending	a	signal	to	a	process:	

a. When	a	shell	starts	a	process	on	Linux,	it	needs,	on	occasion,	to	send	a	signal	to	it,	in	fact	
that’s	how	the	OS	communicates	with	your	process.		The	signal	can	be	something	like…”hey,	
I’m	going	to	interrupt	you…”	or	“its	1me	for	you	to	end”.		We	can	use	a	program	to	send	a	
signal	to	our	process	manually.		This	program	is	delighzully	called:	“kill”	

b. Typing	the	following	will	send	a	signal	to	your	process	telling	it	to	end	immediately:	
kill -9 35640

Here,	you	must	replace	the	number	35640,	with	your	“ex1”	process	ID	for	this	to	work.	
No1ce	that	in	your	other	terminal	(where	the	program	was	running),	it	now	indicates	that	
the	program	was	killed.	
You	can	actually	write	your	programs	to	receive	and	handle	different	signals	from	the	OS,	
sort	of	like	puong	a	backdoor	into	your	program!		Maybe	you	can	make	your	running	
program	give	you	status!		Google	“trap	and	signal”	programming	if	you	are	interested	

ESE150	–	Lab	09	 	 	Page	� 	of	� 	8 19

ESE	150	–	Lab	09:	Opera1ng	System	Basics

8. Submit	the	program	from	5.c	(aner	being	run)	and	your	ps	screenshot	and	explana1on	form	6.o	to	the	
canvas	Prelab	9	assignment	for	your	prelab	checkoff.	

Note:	once	typing	at	the	Linux	shell,	you	can	use	the	man	command	(short	for	manual)	to	get	more	
informa1on	on	any	Linux	command.		For	example:	“man	ps”.		In	this	case	it	may	prompt	you	for	the	
manual	sec1on.		Choose	1.	

ESE150	–	Lab	09	 	 	Page	� 	of	� 	9 19

ESE	150	–	Lab	09:	Opera1ng	System	Basics

Lab	Procedure:	

Lab	–	SecHon	1:	Real	Hme	monitoring	of	a	process	and	process	priority	
• Learn	how	to	use	a	monitoring	process	called:	htop	
• Learn	how	to	change	the	priority	of	a	process	using	“nice”	
• Learn	how	to	run	a	program	in	the	foreground	and	background	of	the	shell	
• For	this	sec1on,	you	should	run	your	code	on	speclab	

1. ssh	into	speclab	as	explained	in	the	prelab.	

2. Create	a	new	program	with	an	infinite	loop:	
a. Change	to	the	directory	where	you	were	working	in	prelab	

cd ~/ese150_lab9
b. Create	a	new	folder	for	this	program:	

mkdir ex2	 (this	creates	a	folder	named:	ex2	under	ese150_lab9)	
cd ex2	

c. Create	a	new	C-program	in	the	nano	editor,	by	typing:	
nano ex2.c

d. In	the	editor,	type	or	copy/paste	the	following	code:	
#include <stdio.h>

int main () {

 int i = 0 ;
 printf ("Starting Example #2 Program...\n") ;

 while (1) {
 i=i+1 ;
 }

}

e. The	program	above	will	loop	“forever”	adding	1	to	a	variable	i	for	all	eternity	☺ 	

f. Save	the	program,	compile	it	(using	commands	similar	to	those	from	the	previous	sec1on),	
and	run	it	as	follows:	
./ex2	

3. Monitor	the	process	in	the	other	terminal	window	(as	you	did	in	the	last	sec1on):	
a. Look	at	the	process	by	issuing	the	command:	

ps –fu PENNKEY

b. It	should	return	a	list	of	your	processes,	but	something	like	this:	
USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND
tfarmer 6750 100 0.0 4068 652 pts/445 R+ 00:40 0:02 ./ex2

c. Look	for	your	“ex2”	process:	the	one	shown	above	has	process	#	6750	
d. Examine	the	“STAT”	column	and	no1ce	this	process	is	by	no	means	sleeping!		It	is	in	a	

running	state.		In	fact,	if	you	look	at	the	“%CPU”	column,	you	will	see	it	is	at	100%!	

ESE150	–	Lab	09	 	 	Page	� 	of	� 	10 19

ESE	150	–	Lab	09:	Opera1ng	System	Basics

i. Your	ex2	process	is	keeping	the	CPU	busy	100%	of	the	1me,	this	isn’t	actually	good.		
But	your	program	has	an	infinite	loop	within	it,	so	it	is	not	possible	for	the	CPU	to	
put	it	to	sleep.		Eventually,	it	will	begin	slowing	the	machine	down	considerably!	

4. Monitor	the	process	in	“real	1me”	
• “ps”	shows	you	a	snapshot	of	your	process	at	the	1me	when	you	run	ps.	
• Onen,	it	is	useful	to	see	your	process	changing	its	status	in	real	1me.	
• There	is	a	u1lity	known	as	“top”	and	another	more	improved	version	called	“htop”.	
a. In	the	terminal	not	running	your	“ex2”,	type	the	following	command:	

htop

b. A	graphical	‘looking’	window	will	appear	showing	all	processes	running	on	the	machine,	
sorted	by	how	much	CPU	1me	they	are	using:	

� 	
c. On	top	of	the	window,	you’ll	see	a	representa1on	for	each	CPU	(or	core	in	your	mul1core	

processor)	
i. No1ce,	CPU	#12	in	the	example	above	is	pegged	at	100%.		This	system	hasn’t	come	
to	a	halt	because	it	has	20	CPUs;	my	process	(ex2)	has	been	moved	onto	CPU	12.	

d. You’ll	no1ce	your	process	(ex2)	is	likely	at	the	top	of	the	list	(or	maybe	another	ESE150	
student’s	ex2?)		This	list	is	ordered	by	CPU	%	usage.		Processes	using	the	most	CPU	1me	are	
on	the	top	of	the	list.	

e. In	the	other	window,	where	ex2	is	running,	press	<ctrl>	C	
i. This	sends	a	signal	to	your	process	to	STOP,	and	it	will	end.	

f. In	the	HTOP	window,	you’ll	see	your	process	fall	off	the	list,	and	the	CPU	will	get	back	to	
normal!	

g. Some	other	things	to	no1ce	about	HTOP:	
i. On	the	top,	you	can	see	how	many	“tasks”	or	“processes”	are	running	on	all	your	
CPUs	(2,681	in	the	example	shown).	

ii.You	can	also	see	the	output	of	the	CPU.	

ESE150	–	Lab	09	 	 	Page	� 	of	� 	11 19

ESE	150	–	Lab	09:	Opera1ng	System	Basics

iii.You	can	even	see	how	many	processes	are	ACTUALLY	running---only	2	
iv.You	can	see	how	long	the	system	has	been	turned	on!	(up1me).	

h. The	menu	along	the	bo\om	of	the	screen	lets	you	send	signals	to	processes	using	keystrokes	
(instead	of	using	the	command	kill).	

i. In	the	terminal	not	displaying	htop,	re-run	ex2	as	follows:	
./ex2	
i. Once	ex2	reappears	in	the	htop	window,	use	the	up	and	down	arrow	keys	to		
navigate	to	highlight	it.	

ii.Press	the	bu\on	that	sends	a	kill	signal,	and	press	enter.	
iii.You	should	see	in	the	other	terminal	that	ex2	has	been	terminated!	

5. Changing	the	priority	of	a	process:	
• As	discussed	in	lecture,	the	opera1ng	system	can	use	several	algorithms	to	schedule	1me	for	

processes	on	a	CPU.	
• One	algorithm	is	simply	“round	robin,”	giving	each	process	that	is	running	a	li\le	1me	on	the	

CPU	and	rota1ng	through	the	list	of	processes	that	require	1me.	
• Another	is	by	assigning	a	“priority”	to	each	process	and	then	leong	processes	with	the	

highest	priority	run	on	the	CPU	before	lower	priority	processes,	or	perhaps	leong	them	run	
longer	on	the	CPU.	

• In	Linux	you	have	some	control	over	the	priority	of	your	process,	this	control	is	called	a	
processes	“niceness”.	

a. In	one	window,	keep	your	“htop”	u1lity	running.	
b. In	the	other	terminal	window,	start	your	program	ex2.
c. Your	process	should	quickly	reach	100%	CPU	1me	

i. But	look	also	at	the	column	labeled:	“PRI”	and	“NI”	
ii.PRI	means	priority.		By	default	all	programs	you	run	from	the	shell	get	the	priority	of	
“20”	in	Linux.		This	#	can	range	from	0	to	39.		A	user	cannot	set	this	value	directly,	
the	kernel	assigns	this	to	running	processes.	In	the	following	steps,	it	will	become	
clearer	which	priority	values	mean	more	execu1on	1me:	having	a	higher	number	or	
a	lower	number	for	priority.	

iii.NI	indicates	the	“niceness”	of	a	process.		By	default	all	programs	get	a	niceness	of	0.	
They	can	range	from	0	to	19.		This	is	a	value	a	user	can	set	for	any	process	they	own.	

iv.The	Priority	of	a	process	is	calculated	by	adding	20	+	NI	
d. Next	in	the	terminal	where	ex2	is	running,	press	the	bu\on	<ctrl>	Z	

i. Quickly	look	over	to	the	“htop”	window,	no1ce	your	processes	state	is	changing!	
ii. It’s	no	longer	taking	up	100%	of	the	CPU.	
iii.You’ll	no1ce	its	status	is	now	“T”	–	you	have	manually	suspended	your	process.	
iv.Now,	type	the	command:	bg	
v. This	will	start	your	process	back	up	and	run	it	in	the	background.	No1ce	that	
because	it	is	now	running	in	the	background,	you	can	s1ll	type	into	the	terminal.		

e. Alter	the	“niceness”	of	your	running	program	by	typing:	
renice –n 19 –p (fill in your processes number here)
Look	carefully	at	htop,	at	the	Priority	field	and	the	Nice	field.		Does	it	add	up?	

f. Start	another	instance	of	your	process,	but	with	a	different	priority	using	the	NICE	
command:	

nice -18 ./ex2 &	 (the	&	starts	your	process	in	the	background)	

ESE150	–	Lab	09	 	 	Page	� 	of	� 	12 19

ESE	150	–	Lab	09:	Opera1ng	System	Basics

• Look	carefully	at	the	htop	and	compare	the	processes	priority.		
• Also	look	at	the	CPU’s	status,	no1ce	the	OS	assigned	your	processes	to	two	free	

CPUs.	
Start	yet	another	instance	of	your	process:	
nice -16 ./ex2 &	 	

Con1nue	this	process	(lowering	the	niceness	value	each	1me)	un1l	you	fill	up	all	the	
CPUs	(or	run	out	of	niceness	levels).			With	other	ese150	students	running	on	
speclab,	you	may	not	need	to	start	many	processes;	at	least	start	the	3	above.	
What	happens	when	all	the	CPUs	are	filled	and	two	processes	have	the	same	
priority?		Who	wins?		Which	priority	is	be\er	to	have	(gets	more	run1me)?		  
A	high	or	low	#?	

• Take	a	screenshot	of	your	HTOP	command	(press	<print	screen>)	
• Save	your	screenshot	for	submission	with	the	lab.	You	will	also	need	to	

submit	an	explana1on	of	how	this	htop	output	reflects	the	different	
niceness	values.	

• Try	“re-nicing”	a	process	to	a	lower	priority	(ie,	higher	niceness)	using	the	
renice	command	(see	step	e).	

g. Lastly,	kill	all	of	your	“ex2”	programs;	there	should	be	many	of	them	running.		You	can	do	this	
via	the	kill	command	(discussed	in	prelab),	or	by	using	the	HTOP	program	to	send	them	a	
KILL	signal.	

h. Stop	the	htop	program	(you	can	simply	use	Ctrl+C	or	you	can	use	the	kill	command	in	the	
other	terminal	window).	

ESE150	–	Lab	09	 	 	Page	� 	of	� 	13 19

ESE	150	–	Lab	09:	Opera1ng	System	Basics

Lab	–	SecHon	2:	Monitoring	Process	Concurrency	
• Observe	how	programs	run	concurrently	on	your	computer.	
• We	will	con1nue	to	run	this	part	of	the	lab	on	speclab.	

1. Create	a	directory	pi	under	ese150_lab9	and	change	to	that	directory.	
								Type	the	following	into	the	window	that	was	running	ex2:	

cd ..	 	 (this	brings	you	one	folder	up:	ese150_lab9)	
mkdir pi														(this	creates	a	folder	named:	pi	under	ese150_lab9)	
cd pi 	(this	changes	to	the	new	directory)	

2. Copy	over	pi.c	from	~ese150/lab9:	cp ~ese150/lab9/pi.c .	
3. Read	through	the	pi.c	code.	[hint:	you	can	bring	it	up	in	an	editor	like	nano	as	you	did	on	earlier	

parts;	or	you	can	use	a	command	like	more pi.c	to	browse	through	it	on	a	terminal;	or	you	can	
use	scp	to	copy	the	file	to	your	local	machine	where	you	can	use	your	favorite	text	editor.]	
The	program	itera1vely	es1mates	pi,	periodically	prin1ng	out	its	current	es1mate.	
a. note	what	it	prints	at	each	repor1ng	interval.	
b. note	the	default	label	is	set	to	the	pid.	
c. note	op1ons	to	control	label,	repor1ng	interval,	and	itera1ons.	

4. Compile	the	pi	program:	gcc –o pi pi.c
5. Restart	htop	in	a	separate	window.	
6. Run	the	program	to	see	what	it	does:		./pi
7. Run	the	program	twice	in	series:		./pi ; ./pi	

The	semicolon	tells	the	shell	that	the	first	command	has	ended	and	what	follows	is	another	
command	to	be	executed	aner	the	first	command	completes.	

8. Capture	a	screen	shot	of	the	output	from	running	the	above	command.	
9. From	htop	and	from	the	printed	output,	how	do	you	know	that	the	processes	for	the	two	execu1ons	

of	pi	run	in	series?	
10. Run	the	program	in	background:	./pi &	

The	ampersand	tells	the	shell	to	start	the	command	and	run	it	in	background,	immediately	returning	
to	process	another	command.		If	you	don’t	try	typing	anything	while	it	is	running	behavior	will	look	
largely	the	same	as	when	you	ran	pi	without	the	ampersand.	

11. Run	two	instances	of	pi	simultaneously:		./pi & ./pi &	
Here	we	see	the	real	u1lity	of	the	&;	the	second	pi	is	started	while	the	first	pi	is	running.	

12. Capture	a	screen	shot	of	the	output	from	running	the	above	command	while	both	pi	processes	are	
running.	
a. It	may	be	necessary	to	quit	htop	to	capture	its	output	at	specific	point	in	1me.	

13. Based	on	both	what	you	see	on	htop	and	what	you	see	on	the	console	output:	
a. Explain	how	you	can	tell	that	the	instances	of	pi	are	running	simultaneously.	
b. Are	the	processes	running	on	the	same	or	different	processors?		Explain	how	you	can	tell. 

ESE150	–	Lab	09	 	 	Page	� 	of	� 	14 19

ESE	150	–	Lab	09:	Opera1ng	System	Basics

Lab	–	SecHon	3:	Monitoring	the	memory	consumpHon	of	a	process	
• Learn	how	to	use	“ps”	to	see	if	there	is	a	memory	leak	in	a	program.	
• We	will	con1nue	to	run	this	part	of	the	lab	on	speclab	

• Memory	primer:	When	a	program	starts	on	an	OS,	it	is	given	a	small	segment	of	the	computer’s	RAM	
to	work	with.		RAM	is	some1mes	called	“physical”	memory	as	it	is	a	physical	chip	inside	the	system	
and	is	finite	in	quan1ty.	

• Remember	that	the	job	of	an	OS	is	to	“virtualize”	the	hardware,	so	that	each	process	or	program	
thinks	it	is	the	only	one	running	on	the	CPU	and	has	access	and	use	of	all	the	memory	available	to	
the	CPU.	

• If	a	program	goes	beyond	the	amount	of	physical	memory	the	OS	has	given	it,	the	OS	can	provide	it	
more	memory,	called	“virtual	memory”	(as	opposed	to	“physical”	memory).		Virtual	memory	is	the	
idea	of	using	a	small	piece	of	the	hard	drive	(not	RAM,	but	the	actual	slow	hard	drive)	to	act	as	if	it	is	
RAM!		This	type	of	memory	is	considerably	slower,	but	your	program	won’t	no1ce	a	difference…it	
will	just	run	slower.	

• In	this	sec1on,	we’ll	see	if	we	can	write	a	program	that	will	“exhaust”	the	amount	of	physical	RAM	
that	a	program	gets	to	have	access	to,	and	see	what	happens	when	it	does.	

• When	you	write	a	program	in	C,	you	can	ask	the	OS	for	more	memory	to	store	informa1on,	using	a	
func1on	called:	“malloc()”	which	stands	for	“memory	allocator”.		If	the	OS	has	the	space,	it	will	give	
you	the	memory,	if	it	does	not,	it	will	simply	tell	your	program	that	there	is	no	memory	len.			

• Normally	a	good	programmer	will	return	the	memory	that	the	memory	allocator	has	provided	to	it	
using	a	func1on	called	“free().”		If	a	programmer	forgets	to	do	this,	the	program	begins	to	run	out	of	
memory,	as	there	isn’t	any	more	len!		We	call	this	a	memory	leak.	

• In	this	sec1on,		we’ll	also	see	how	to	monitor	a	process	and	see	if	it	is	“leaking”	memory.	

1. Create	a	new	program	that	requests	memory	from	the	OS…in	a	way	that	is	out	of	control:	
a. Create	a	new	folder	ex3	under	ese150_lab9	and	change	to	that	directory.	
b. Copy	over	the	ex3.c	program:	

cp ~ese150/lab9/ex3.c ex3.c
c. Review	the	ex3.c	program:	

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#define SIZE 100000

int main () {

 int *a, *b, *c ;
 int totalloc=0;

 printf ("Starting Example #3 Program...\n") ;

 while (1) {
 // request memory from the OS
 a = malloc (sizeof(int)*SIZE) ;

ESE150	–	Lab	09	 	 	Page	� 	of	� 	15 19

ESE	150	–	Lab	09:	Opera1ng	System	Basics

 b = malloc (sizeof(int)*SIZE) ;
 c = malloc (sizeof(int)*SIZE) ;

 totalloc+=3*sizeof(int)*SIZE;

 // store some values
 *a = 1000 ;
 *b = 2000 ;
 *c = 3000 ;

 printf(“still running with %d total bytes
allocated\n”,totalloc);
 //pause for one second before doing this again
 sleep (1) ;
 }
}

• This	program	asks	the	OS	for	the	space	to	store	3	arrays	of	SIZE	(100,000)	integers	each:	a,	b,	
c	

• Then	it	stores	something	in	the	spaces	it	received	back	from	the	OS.	
• It	prints	out	the	total	bytes	allocated.		(Usually	programs	with	unintended	leaks	won’t	be	so	

obvious	in	repor1ng	their	memory	usage;	we	include	this	so	you	can	see	when	the	program	
is	s1ll	running	and	to	give	you	something	to	correlate	with	the	monitoring	you	are	doing.)	

• Lastly,	it	sleeps	for	one	second	and	does	it	all	over	again.	
• The	mistake…it	“forgets”	to	return	the	memory	space	to	the	OS	and	simply	asks	the	OS	for	

more	space	to	store	a,b,c	all	over	again.		This	is	a	terrible	waste,	but	the	OS	doesn’t	realize	
that	the	program	is	“done”	with	the	previous	opera1on.	

2. Save	the	program,	and	compile	it	using	clang	instead	of	gcc	(keep	all	other	arguments	the	same).		
clang	ex3.c	-o	ex3	
Before	you	run	it,	make	sure	HTOP	is	running	in	another	terminal	window.	

3. Start	the	program	above	by	typing	in:	
./ex3

4. Carefully	watch	the	process	in	htop.		Look	at	two	columns:	
VIRT	and	RES.	These	represent	how	much	virtual	memory	the	program	is	using	–	i.e.	how	much	
memory	the	program	thinks	it	has.	RES	is	a	representa1on	of	the	physical	memory	a	process	is	
consuming,	and	it	corresponds	directly	to	the	MEM%	column.		VIRT	is	probably	more	relevant	to	
understanding	what’s	happening	here.		If	your	program	isn’t	using	parts	of	the	memory	it	
allocated,	the	OS	doesn’t	need	to	keep	it	resident	in	physical	memory.	(this	is	called	memory	
virtualiza1on.)	
Note:	you	may	need	to	scroll	down	the	set	of	tasks	in	htop	to	find	this	one.		Because	it	stalls	on	i/
o	and	sleep,	it	will	typically	end	up	toward	the	bo\om	of	the	task	list.	

5. Take	a	screenshot	of	the	htop	output	showing	the	memory	usage	at	3	different	Hmes	to	show	the	
memory	usage	growth.			Include	these	screenshots	in	your	lab	report.	

Note:	if	HTOP	appears	to	freeze/hang,	you	can	press	<ctrl>	C	in	your	ex3	program,	and	give	HTOP	a	
higher	priority!		Or	you	can	reduce	the	“100000”	size	for	malloc	by	a	factor	of	10.	
6. You	can	also	examine	the	memory	leak	without	htop,	using:		

ps -fu --sort pmem

ESE150	–	Lab	09	 	 	Page	� 	of	� 	16 19

ESE	150	–	Lab	09:	Opera1ng	System	Basics

Lab	–	SecHon	4:	Observe	Process	VirtualizaHon	
• Use	the	skills	and	understanding	you	have	developed	in	the	previous	sec1ons	of	the	lab	to	

observe	processes	interleaving	on	processor	cores.	
• You	may	perform	this	on	speclab	or	on	your	own	linux	or	mac	computer.	

With	mul1ple	physical	process	cores,	our	modern	machines	can	onen	run	each	of	the	ac1ve	processes	
on	a	physical	core.		Nonetheless,	the	machines	are	s1ll	capable	of	suppor1ng	more	ac1ve	processes	than	
physical	processor	cores.	

Unix	also	allows	us	to	connect	the	output	of	one	running	program	(process)	to	the	input	of	another	using	
the	pipe	construct	(denoted	with	a	ver1cal	bar	|).		This	is	onen	a	useful	way	to	compose	programs.		It	is	
also	a	way	to	run	several	processes	simultaneously.	

1. Copy	over	count.c,	add1.c,	and	endpipe.c	from	~ese150/lab9:	  
cp ~ese150/lab9/count.c .	
[or	use	scp	if	you	need	to	copy	to	your	own	linux	or	mac	computer.]	
(similar	for	the	other	3)	

2. Compile	the	three	simple	programs	(using	gcc)	so	you	get	executables	count,	add1,	and	endpipe	
3. count.c	outputs	values	form	0	to	a	provided	command-line	argument.  

Try:	./count 10	
Take	a	look	at	the	code	in	count.c.	

4. add1.c	simply	adds	1	to	its	inputs.  
Try:	./count 10 | ./add1  
This	pipes	the	output	of	count	to	add1.	
Take	a	look	at	the	code	in	add1.c;	in	addi1on	to	adding	1,	it	prints	out	some	progress	code	on	
stderr	(an	output	stream	that	is	not	being	piped	to	the	next	program,	so	will	typically	show	up	on	
your	console).			

5. endpipe.c	prints	out	its	value	with	some	more	formaong	
Try:	./count 10 | ./add1 | ./endpipe
Take	a	look	at	the	code	in	endpipe.c.	

6. You	can	make	the	pipe	longer	by	including	more	add1	rou1nes:	
Try:	./count 10 | ./add1 | ./add1 | ./endpipe	

7. By	generalizing	this,	you	can	create	arbitrarily	long	pipelines	with	any	number	of	add1’s	in	the	
middle.		In	par1cular,	this	lets	you	start	many	processes	running	simultaneously.		By	looking	at	
the	outputs	showing	which	process	is	running	when,	you	can	see	when	each	process	performs	
an	opera1on.	

8. Create	a	large	chain	with	more	processes	(add1’s)	than	there	are	processors	on	your	computer	
(try	for	twice	as	many).			

9. By	monitoring	the	output,	collect	evidence	that	all	the	processes	are	running	simultaneously,	
even	though	there	are	more	processes	than	processors.	That	is,	you	want	to	collect	evidence	
that	shows	that	the	processes	are	not	just	being	assigned	to	a	single	processor	and	running	from	
start	to	finish,	but	rather	mul1ple	processes	are	sharing	a	single	processor	core	and	are	being	
swapped	in	and	out	of	that	core	to	allow	the	set	of	processes	in	the	pipeline	to	make	progress	
simultaneously.	

ESE150	–	Lab	09	 	 	Page	� 	of	� 	17 19

ESE	150	–	Lab	09:	Opera1ng	System	Basics

a. This	may	require	a	large	count	to	give	processes	1me	to	start	and	run.	
b. It	may	be	useful	to	capture	the	output	of	the	en1re	run	which	may	be	longer	than	the	

scroll	buffer	on	your	window.	Use	script:	
i.script watch_file
ii.This	will	give	you	back	a	terminal	prompt.	
iii.Run	your	command(s)	here.	
iv.When	done,	type:	exit
v. Look	at	watch_file	using	more,	nano,	or	your	favorite	editor	or	viewer.	

c. For	convenience,	you	may	want	to	put	your	unix	command	line(s)	in	a	file	that	you	can	
edit	with	an	editor	and	then	use	the	source	command	to	have	it	run	the	unix	
commands	from	the	file.		E.g.		If	you	want	to	have	4	./add1’s	in	your	command	to	be	
run,	make	a	file	called script.sh,	and	paste	the	following	command	into	it:	

 ./count 10 | ./add1 | ./add1 | ./add1 | ./add1 | ./endpipe
Then,	save	the	script	file,	and	run	it	in	the	terminal	using	the	following	command:	
source script.sh	

10. Run	your	experiment	and	capture	evidence	of	process	interleaving.		(part	of	your	design	task	is	
to	iden1fy	how	you	will	be	able	to	collect	such	evidence.)	

11. Include	your	evidence	in	your	lab	report	and	explain	how	it	demonstrates	interleaving	of	
processes.	

Exit	Checkoff:	explain	your	experiment	and	your	collected	evidence	to	your	TA	and	explain	how	this	
demonstrates	process	interleaving	on	the	processor	cores.  

ESE150	–	Lab	09	 	 	Page	� 	of	� 	18 19

ESE	150	–	Lab	09:	Opera1ng	System	Basics

Postlab	
1. Remotely	log	in	to	eniac	as	in	prelab:	

a. Run	ps –aux	to	determine	the	number	processes	currently	in	the	system.	
i. Scan	the	full	output	just	to	get	a	sense	of	what’s	running.	
ii.Use	ps –aux | wc	to	actually	get	a	count.  
wc	is	the	word	count	command;	with	no	arguments	the	first	number	it	reports	is	
the	number	of	lines;	since	ps	lists	one	process	per	line,	this	gives	you	the	count.	

b. Run	nproc	to	determine	the	number	of	processors	on	eniac.	
c. Es1mate	the	average	number	of	processes	per	processor	on	eniac.	
d. Run	ps –aur	to	determine	the	number	of	processes	actually	running	at	an	instance	in	

1me	(again	you	will	probably	want	to	use	the	|wc	trick	to	get	the	count).	
e. Use	who (and	|wc)	to	determine	the	number	of	users	currently	logged	in	to	eniac.	
f. Es1mate	the	number	of	users	per	processor.	

2. Assume	you	have	a	1	GHz	processor	(1	billion	cycles	per	second).		Assume	an	mp3	encoder	
needs	1,000	cycles	per	sample,	and	you	want	to	sample	data	at	44KHz.		What	frac1on	of	
the	processor’s	compute	capacity	does	the	mp3	encoding	task	require?	

HOW	TO	TURN	IN	THE	LAB	

• Submit	a	PDF	document	to	the	designated	canvas	assignment	containing:	
o Screenshots,	code,	and	descrip1ons/explana1ons	where	asked	

▪ Bolded	and	italicized	
o Answers	to	ques1ons	asked	in	the	lab	

▪ 	Sec1on	1:	5f,	Sec1on	2:	9	and	13,	Sec1on	4:	11	

o Describe	your	experiment	for	Sec1on	4	(i.e.	step	1),	include	the	evidence	collected,	
describe	how	the	evidence	demonstrates	process	are	sharing	processors.	

o Include	Prelab	and	Postlab		

o Make	sure	all	items	are	clearly	labeled,	screenshots	are	easy	to	read,	and	sec1ons	are	
clearly	outlined.	

ESE150	–	Lab	09	 	 	Page	� 	of	� 	19 19

