

Lecture \#1-Course Introduction / Intro to Digital Audio
ESE 150 -
DIGITAL AUDIO BASICS

LECTURE TOPICS

History \& Motivation
Computing and Digital Audio
Overview of Class Schedule
Big picture of our class goals
Course Introduction / Goals of Class
Syllabus; Laboratory; Grading
Course Content Overview
PART 2
Quick Week-by-week breakdown of class itself
Summary

POLL

Believe I can assume you use a cell phone and GPS
How do you obtain music? [answer chat]
Communicate with friends outside of school? Voice phone, e-mail, text message, facebook, skype?
Where do you go to find answers?
Google, wikipedia

CONNECTING THE WORLD

By Jeff Ogden (W163) and Jim Scarborough (Ke4roh) - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=18972898

IN YOUR LIEETIME...
1998: Google, PayPal, First commercial MP3 player
2001: iPod, Wikipedia launched
2002: Go Pro launched
2003: iTunes launched, Skype released, Tesla launched
2004: Facebook launched
2005: YouTube launched
2006: Twitter launched, DJI launched
2007: iPhone introduced, Hulu launched, Netflix add video streaming
2008: Bitcoin, Spotify
2009: Venmo
2010: Instagram
2011: Siri, Snapchat, Google driverless cars, Uber
2012: Makerbot Replicator, Tinder launched
2013: Google Glass
2014: Amazon Alexa
2015: iWatch
2016: AirPods, Pokemon Go
2017: Tik Tok
2019: Disney+, Apple+

COOL STUEF OF TORAY...

Today's "must have" technology is:
computerized, networked, and based on digital media
Cell phones
MP3 players (Digital Audio Players)
Internet enabled
Digital cameras and video recorders (part of phones!)
Realistic Video Games
Integrated (e.g. iPhone, iPad)
DVRs (e.g. TiVo)
E-book readers (e.g. Kindle)
3D printers (e.g. Makerbot)
Circuit Scribe - draw actual circuits, electric ink! Replicator...
Augmented Reality (e.g. Jedi Challenge, Pokemon-Go) Holodeck..

WHAT RO THESE THINGS INYOLVE?

Computation

Communications
Hardware
Substantial software

Products of Computer Engineers

WHAT MAKES US SAFER, HIXE LONGER?
Transportation
Anti-lock brakes
Traction control
Blind-side assist
Watch over
Security cameras
Baby monitors
Medical Devices
Ultrasound
MRI
DNA sequencing
Pacemakers

Changing World: Smalt World

Ubiquitous Internet

This changed everything
Smartphone let us carry Internet with us

Facebook

Allowed us instantly find anyone!
United the world in many ways

CHANGING WORLD: EASY SHARING

Easy Instant sharing and storage

* Photos, videos, writing
× Web, Facebook, Youtube, Blogs
* Backed up, Cloud
\times Accessible anywhere in the world
* Indexed and searchable
* Can carry it with you

CHANGING WORLD: INSTANT GRATIFICATION

Search engines

Instant access to knowledge
iTunes/Spotify
Instant access to music/casts/apps/video too
Streaming video
Instant access to video/news/visual information Internet services/Netflix/Hulu/YouTube/On-Demand/etc.

Amazon.com

Instant access to nearly any product, \sim drone delivery!

Changing World: New WEALTH, NEW PLAYERS

Microsoft founded 1975
World's richest man...for a while
Apple founded 1976
Highest valued company
Oracle 1977
CISCO 1984
NVIDIA 1993
Amazon.com 1994
Just passed richest man..
E-Bay 1995
Google, Netflix, PayPal 1998
Tesla 2003
New richest man
Facebook 2004
Twitter 2006
Bitcoin 2008
Venmo 2009

CONXERGENCE

Big Ideas and Advanced Technology
Digitize Everything
Cheap Digital Processing
Cheap Storage
Cheap Digital Bandwidth
Driven by Moore's Law
Store and compute more bits per \$\$

Enabled by Visionary Engineers

Hard work, inspiration, and competition
BEFORE GOING ON...CALLIBRATION:

[^0]

MECHANICS OF THE CLASS

Wednesday, Friday: Lecture
Introduce concepts (theory)
Help paint the big picture
Monday: Lab
Put theory into practice
Apply 1 big concept in real world
Many concepts may appear in lecture...
One will be put to use in guise of digital audio in the lab
Work in teams of 2
Individual lab report write-ups
Friday: Lab Report due
(except formal one - Sunday, and final one...)

LECTURE TIMELINE

Put preclass out previous day
9:05am - actual start lecture
9:55am - target end lecture
Recommend attend synchronous lecture recording

If not, complete lecture quiz before next lecture

CLASS GoALs

Context and motivation for CMPE major
Appreciate how CMPE, EE, CSCI, SSE:
Work together
How they impact today's world
Start thinking like an engineer!

COMPONENTS

Lecture slides online morning of lecture Probably night before; post piazza
Big Idea - 1p'er for every week
Reading
Preclass - available day before class
Work through to get you thinking about the topic
.. and gives you some of the questions will ask in lecture
Won't be available later; stay up with class
"Warm" Calls during synchronous recording Promote interaction/engagement
Feedback forms
Complete at end of lecture (or after watch) Help me tune lecture for class

OUTCOMES

Able to conduct experiments
Psychoacoustic, network, hardware
Able to optimize information encoding
Able to quantify quality vs. size tradeoffs in audio
Able to use oscilloscope, matlab, Arduino, FPGA
Able to write formal lab report
Understand role of Intellectual Property
Appreciate User Interface design Understand technology enables new capabilities

DIMENSIONS

Active (ACT) vs. Reflective (REF)
Doing vs. thinking
Sensing (SEN) vs. Intuitive (INT)
Facts and methods vs. abstractions and innovation
Visual (VIS) vs. Verbal (VRB)
Pictures, diagrams vs. descriptions
Sequential (SEQ) vs. Global (GLO)
Linear steps vs. context and connections

See reading link on syllabus.

Aware of Differences

Differences among people
Differences between faculty and students?
Claim college courses are biased toward:
Reflective, intuitive, verbal, sequential
This course:
Active, sensing?, visual, global

Read explanation

Being aware and how to cope useful for navigating all your courses at Penn

HOW RQ PEOPLE COME OUT?

Create Histogram

How I came out...
Count numbers by students:
Bin: 9+, 8-4, 3-1, 0, 1-3, 4-8, 9+
Histograms:
Active/Reflective
Sensing/Intuitive
Visual/Verbal
Sequential/Global

WEEK 1: INTRODUCTION TO SOUND

Sound is a pressure wave

http://www.archive.org/details/SoundWavesAn

WEEK 1: INTROPUCTION TO SOUND WAYES
Cycle $=1$ iteration of sine wave Hertz $(\mathrm{Hz})=1$ cycle per second
$1 \mathrm{kHz}=1000 \mathrm{cycles} / \mathrm{s}$

Source: http://www.mediacollege.com/audio/01/sound-waves.html

Week 2: Discerete Sampling

Voltages can be sampled discretely
Both in time and amplitude
How many bits to represent one of 16 discrete values?
In general: 1 of N discrete values?
Alternately: B bit number can represent how many things?

WeEk 2: Disçrete Sampling

WEEK 8: Hardware

To perform decompression For audio playback

Need to perform
a few million operations
Operations addition, multiplication
Calculate cosines
Scale values
Add waveforms per second of audio
How fast does CPU need to be to work with audio?

WEEK 9: OPERATING SYSTEM

This hardware can be virtualized and shared among tasks

How does OS control hardware?
Do we need giant OS or small portion for mp3?

Week 10: Networking

Bits can be transported between machines
How fast must network speed to be to stream audio?

WEEK 11: ACTUATION
How reach out and touch the world?

WEEK 13: INTELLECTUAL PROPERTY
Who own's the bits?
What is the law?
Why is the law?
Why should you care (as engineers)?
How is the world changing?

ESE150 Compression, MP3s,
Psychoacoustics, and Everything

THIS COURSE

Always trying to improve:

Attempts to explain a great deal of Computer Engineering Without going to far in depth
Lecture/Lab
Intent is to tie them together well
Inevitably, the tie won't always be obvious
Help us, help you (and future students):
The more feedback you provide, the better we can make this course
If a tie isn't obvious, let us help make the connection stronger We want you to love Comp Engineering as much as we do ;)
One form: daily feedback forms (link on syllabus)

Parting Thought

From $1^{\text {st }}$ computer to PCs in 30 years Eniac $1946 \rightarrow$ Apple 1976
From first PCs to iPhone next 30 years Apple 1976 \rightarrow iPhone 2007
What will next 30 years hold? Beginning of your career
What will you imagine, create, enable?

Complete: Lab Pickup Time Poll, Today’s Feedback.

[^0]: \times What is a bit (a Binary Digit)?
 Smallest piece of information we can store (on/off) Indicates true or false
 How many bits in a byte?
 $+8$
 Bytes in a Kilobyte?
 $2^{10} \times 1$ byte $=1024$ bytes
 Bytes in a Megabyte? $2^{10} \times 1 \mathrm{~KB}=1,048,576$ bytes
 Bytes in a Gigabyte?
 $2{ }^{10} \times 1 \mathrm{MB}=1,073,741,824$ bytes
 How many Bytes to store a typical song?

