

LECTURE TOPICS

- Reminder: Sampling and Quantization
- Expressing Mathematically
- <interlude: image resolution>
- Effects of Quantization
- × System Capacity
- × Summary
- References

2

BIG QUESTION

- How represent and process continuous information on a digital computer with finite memory?
 - Note: continuous means signal may take on infinite number of values between any T₁ and T₂

STRATEGY

- Sample at periodic time intervals
 - Discretize independent variable
- » Quantize to discrete levels
 - + Discretize the value of the dependent variable

PROBLEM DECOMPOSITION

- Powerful Engineering technique
 - + Formulate a parameterized solution strategy
 - Then identify the right parameters
- × Divides the problem
- × Here
 - Strategy of sampling and quantization
 - + Then identify the right sampling rate, quantization level
- Convergent: limit of infinite samples, levels
- Once have strategy, reduces to a well-defined optimization problem
- Parameterization admits to tuning for tradeoffs

MATHEMATICAL EXPRESSION

QUANTIZE

- We will quantize to some level L
- * Define as number of values between integers
- x So, we have L steps of 1/L between integers
 - + (or only represent every L'th integer if L<1)
- × In terms of Round
 - + Quantize_L(x) = Round(L*x)/L
 - + E.g. Quantize₈(0.7)=Round(8*0.7)/8=6/8=0.75

BITS

- * If we quantize to L levels per integer
- Represent values between integers
 - + Max
 - + Min
- * How many bits required per quantized value?

BITS PER QUANTIZED VALUE

* Bits = $[log_2((Max-Min)*L+1)]$

SAMPLE VALUES * When sample at time interval T + (for frequency = 1/T) * We collect the points at times: + 0, T, 2T, 3T, 4T, ... * For signal f(t), we are collecting values: + f(0), f(T), f(2T), f(3T), f(4T), ... * Or in general, we are collecting the points + f(i*T) for i=0 to MaxSamples (or MaxTime/T)

*Why called retina? Claim (goal): as much resolution as you have in your retina (at typical viewing distance) We cannot see pixels. because our eves are themselves discrete!

APPLE RETINA DISPLAY ** Why called retina? ** Claim (goal): as much resolution as you have in your retina (at typical viewing distance) ** We cannot see pixels, because our eyes have discrete photo receptors (rods, cones) ** Human eye resolution 0.5 arc-minute (0.02 degrees) + Around 300 DPI (Dots-Per-Inch) at 20 inches

EFFECTS OF QUANTIZATION

Noise - difference between our ideal signal and the actual signal + The one that we actually hear + The one that shows up when we transmit data + The one we store or reconstruct * Sometimes will see + R(t) = S(t) + n(t) * Noise n(t) is added to the ideal signal S(t) * R(t) what we receive + Or, equivalently:

n(t)=S(t)-R(t)

PRECLASS 3

Sampling and quantization error at t=1ms?

 $F[i] + (F[i+1] - F[i]) \times \left(\frac{t - i \times T}{T}\right)$

- × T=0.3ms
- × i?
- × F[i], F[i+1]
- * Reconstructed value?
- \times f(1ms)
- * Error=f(1ms)-ReconstructedValue(1ms)

QUANTIZATION ERROR / DESIGN

- Why model quantization error as noise?
- There is always noise present
 - Something other than the signal we intend
 - Wires, electronics, background
 - + Not gaining much if quantization noise < other noise

Quantization adds noise

- + Reduce by increasing sampling, increasing resolution
- More levels → (L) bits → makes more expensive × Bits = [log2((Max-Min)*L+1)]
- Increase L until reach desired noise level
- × Until other sources dominate quantization noise SNR = Signal-to-Noise Ratio
- + How much larger is the signal compare to noise?
 - Mean (average) value of signal / std. dev. of noise
 - Usually what we are optimizing in the system (including ADC)

ENGINEERING

- "An Engineer can do for a dime what anyone else can do for a dollar."
- Engineering is about optimization and efficiency
- × Bits are costly
- * Anyone: Sample frequently with high resolution
- Engineer ask: how few bits can I use without sacrificing quality?
- x Engineering is about tradeoffs
 - + Quality vs. Cost

PROBLEM DECOMPOSITION

- Powerful Engineering technique
 - + Formulate a parameterized solution strategy
 - + Then identify the right parameters
- × Divides the problem
- × Here
 - Strategy of sampling and quantization
 - Then identify the right sampling rate, quantization level
- Once have strategy, reduces to a well-defined optimization problem
- * Parameterization admits to tuning for tradeoffs

..

SYSTEM CAPACITY

QUANTIZATION, SAMPLING, CAPACITY

- Quantization and Sampling
 - + Play enormous role in determining storage capacity of digital system
 - + # of quantization levels → # of bits per sample
 - × Increasing resolution of ADC, reduces quantization noise...
 - But also increases amount of data we must store for each sample
 Bits/sample = [log²((Max-Min)*L+1)]
 - * Bits/sample = |log2((wax-will) L+1)|

Sampling rate = how often we collect # of bits per sample

- × Typically sampling rate = twice frequency of signal (next week)
- × Increasing the rate, increases the amount of data to store!

LIMITS RE SAMPLING

SAMPLING

- Definition of proper sampling
 - + If you can exactly reconstruct analog signal from samples,
 - you have done the sampling properly

 Essentially: you have captured the key information from the signal to process can be reversed
- Milestone of digital signal processing (DSP):
 - + Nyquist-Shannon Theorem (Friday)
 - Tells us our sampling rate should be:
 - $\ensuremath{^{\star}}$ twice the frequency of the signal!

BIG IDEAS

- Approximate continuous waveform on digital media by
 - + Discretize in all dimension
 - For audio: in time and amplitude

 × Sample in time; quantize voltage
- Allows us to store audio signal as sequence of bits
- Reconstruct by "connecting-the-dots"
 - If our dots are frequent enough to represent the signal
- Introduce error → noise
 - + Reason about tolerable (or noticeable) noise

ADMIN

- * Reading for Friday on syllabus
- * Remember feedback
 - + Includes Lab 1
- × Office Hours
 - + T7, W2, R8
 - Zoom links on Piazza (web, canvas)
- x Lab 1 Reports due Friday

REFERENCES

- S. Smith, "The Scientists and Engineer's Guide to Digital Signal Processing," 1997.
- Wikipedia, http://en.wikipedia.org/wiki/Analog-todigital_converter
- Wikipedia: http://en.wikipedia.org/wiki/Pulse-code modulation