

## NYQUIST SAMPLING

Sample at twice the maximum frequency
Can reconstruct perfectly

If have frequencies > SampleRate/2
Will get aliasing ... as high frequencies fold


## SAMPLING - WHAT IS THE MINIMUM?



What about Multirate Signals?


Fourier's Theorem (week 4 preview!):
We can decompose continuous signal in terms of a sum of sines and cosines at different frequencies

## What about Multirate Signals?



## Fourier's Theorem (week 4 preview!):

We can decompose continuous signal in terms of a sum of sines and cosines at different frequencies
This waveform: sum of sine waves at 100 Hz and 250 Hz
What's the Nyquist Sampling Rate then?

PRECLASS 1


$\because$

L
M
R

Properly sampled? Relation?

## What about Multirate signalss?



Fourier's Theorem \& Nyquist Rate:
Highest component's frequency?
What is Nyquist Sampling Rate?
$2 x$ highest frequency contained in the signal
Sampling at this rate: avoids aliasing problem

ALIASING IN MUSIC...

Preclass 2


Multirate Signals and Aliasing
Imagine the above is a music signal ( $100 \mathrm{~Hz}+750 \mathrm{~Hz}$ )
What happens if we undersample? Should sample at 1500 Hz , but instead 1000 Hz The 100 Hz signal will be sampled just fine (as 200 Hz is $2 \times 100 \mathrm{~Hz}$ )
What happens to 750 Hz Signal?


## Multirate Signals and Aliasing

Imagine the above is a music signal ( 100 Hz and 750 Hz chord)
Where will 750 Hz appear as?
folding occurs at: $1000 \mathrm{~Hz}-750 \mathrm{~Hz}=250 \mathrm{~Hz}$
Sample rate - frequency = aliasing/folding frequency


## WhY RO WE NEER THE ANTIALIAS FILTER?

If we can't hear anything above 20kHz...
Why do we need to filter it out?
Dog's can hear from 40 Hz to 60 kHz so clearly there are sounds above 20 kHz
Let's imagine a high frequency noise in music studio
Let's say it's a vibration occurring at 25 kHz
No human can hear it, why filter it out?
Because of aliasing:
Frequency aliasing/folding will occur:
Sample rate - frequency = aliasing/folding frequency
$40 \mathrm{kHz}-25 \mathrm{kHz}=15 \mathrm{kHz}$
The 25 kHz vibration will fold-over to a 15 kHz "hum" or audible noise It will ruin our recording and source of noise wouldn't be obvious!


## Low Pass Analog Filtering

Can limit rate of change
Set a minimum time period for a value to charge output
If signal tries to move too fast (high frequency)
The input change won't be reflected in the output
Ideal: fast inputs "erased" from output
In practice: magnitude reduced
Can engineer filters to get closer to ideal 215, 319

## LOW PASS ANALOG FILTERING

Transfer Vin into Capacitor Vout
Think of Resistor as straw or hose Limits rate of electron flow into Capacitor
Think of Capacitor as a glass or bucket
Must fill with electrons through Resistor to have Voltage (water) level rise
Circuit limits rate of change time at Vout

Resistor-Capacitor


## Frequency and Signal Change

There's a direct relationship between frequency of a signal and rate at which signal changes

Higher frequency $\rightarrow$ higher $\Delta \mathrm{V} / \Delta \mathrm{T}$
Limit rise time $\rightarrow$ limit frequency can pass through filter
Maximum frequency $\rightarrow$ limits the rise-time will have Will rise over $1 / 2$ of the period


FULL BLOCK DIAGRAM OF RSPP SYŞTEM


Before ADC, we put music signal through antialias filter Filter blocks any signals higher than 20 kHz (prevents aliasing!)

Figures from reading: The Scientist and Engineer's Guide to
Digital Signal Processing, By Steven W. Smith

FULL BLOCK DIAGRAM OF DSP SYSTEM


Before ADC, we put music signal through antialias filter
Filter blocks any signals higher than 20 kHz (prevents aliasing!)
Then our ADC can safely sample at $2 \times 20 \mathrm{kHz}$ without aliasing What is our Nyquist Rate?
$f_{s}=2 x 20 \mathrm{kHz}=40 \mathrm{kHz}$, or 40 thousand samples per second!
What is our Nyquist Frequency?
$1 / 2 f_{s}=20 \mathrm{kHz}$
Cutoff frequency of our filter? Has to be the Nyquist Frequency

## BIG IDEAS

Sample at twice the maximum frequency Can reconstruct perfectly

If have frequencies > sample_freq/2
Will get aliasing ... as high frequencies fold
Avoid aliasing with analog Anti-Alias (low-pass) prefilter before sampling

Eliminate high frequencies

## LEARN MORE <br> ESE215 - include analog filtering <br> ESE319 - active analog filtering <br> ESE224 - Signal Processing

## REFERENCES

S. Smith, "The Scientists and Engineer's Guide to Digital Signal Processing," 1997.
http://en.wikipedia.org/wiki/Nyquist frequency http://en.wikipedia.org/wiki/Nyquist rate http://en.wikipedia.org/wiki/Oversampling http://en.wikipedia.org/wiki/Sampling rate http://en.wikipedia.org/wiki/Hearing range http://electronics.howstuffworks.com/telephone6.htm B. Olshausen, "Aliasing", PSC 129 - Sensory Processes Course Notes, UC Davis

## Admin

## Remember feedback

Including on Lab 2
Lab 3 posted
Prelab contains a longer MATLAB tutorial And need to install MATLAB
Plan time for it over weekend

