

LECTURE TOPICS

* Teaser: frequency representation

* Where are we on course map?

* Frequency Domain

* Vector Background

* The Fourier Series

+ can represent any signal in frequency domain

* References

Background
WHAT IS THE FREQUENCY POMAIN?

VECTOR BACKGROUND

We're familiar with multi-dimensional spaces and vector representation E.g. Cartesian Coordinates in 2 Space 2 dimensions X, Y Represent points as vector with 2 elements (x,y) Can easily extend to 3 Space (x,y,z) Harder to visualize, but could extend to any number of dimensions (d1,d2,d3,d4,d5,...)

COMPLEX NUMBERS

* Complex Numbers are an example of this

+ Real dimension
+ Imaginary dimension

* Cartesian version: a+bi* Polar (Magnitude, angle) version: $M \times e^{i\theta}$ * Euler's Formula: $e^{i\theta} = \cos \theta + i \sin \theta$

[also a complex number version that uses complex coefficient and $e^{i\theta}$ instead of cos/sin]

32

FOURIER SERIES (REVIEW OF KEY POINTS) * The idea of the series: + Any PERIODIC wave can be represented as simple sum of sine waves * 2 Caveats: + Linearity: * The series only holds while the system it is describing is linear because it relies on the superposition principle * -aka – adding up all the sine waves is superposition in action + Periodicity: * The series only holds if the waves it is describing are periodic * Non-periodic waves are dealt with by the Fourier Transform * We will examine that in Lecture 9

NYQUIST of frequencies

Remember we said we needed to sample at twice the maximum frequency

Now see all signals can be represented as a linear sum

+ ...and the frequency components are orthogonal

Can be extracted and treated independently

BIG IDEAS x Can represent signals in frequency domain Different basis – basis vectors of sines and cosines Often more convenient and efficient than time domain + Remember musical staff $f(t) = \frac{a_o}{2} + \sum_{n=1}^{N} [a_n \cos(nt) + b_n \sin(nt)]$

ENIAC

* First general-purpose, electronic computer built here at Penn

* Unveiled on Feb. 14, 1946

75 years ago on Sunday

x Symposium to celebrate and learn about on Monday (2/15)

+ 10:30am-noon, 1:30pm-3pm

REMINDER

× Feedback

Lecture and Lab

Lab 4 out

Use MATLAB to transform data into frequency domain

No class on Friday 2/12

Penn Engagement Day

Lab due on Sunday (2/14)

Moved back so not due on Engagement Day

ENIAC Day on Monday 2/15

https://events.seas.upenn.edu/event/eniacday/

Lab on Monday 2/15

After ENIAC Day event

LEARN MORE

* ESE325 - whole course on Fourier Analysis

× ESE224 - signal processing

* ESE215, 319, 419 - reason about behavior of circuits in time and frequency domains

REFERENCES

S. Smith, "The Scientists and Engineer's Guide to Digital Signal Processing," 1997.

https://betterexplained.com/articles/an-interactiveguide-to-the-fourier-transform/