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TEASER

Play this on piano:
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REPRESENTATION

How does musical staff represent sound?
What does vertical position represent?
Note shape?
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3 eighth notes 1 half note
Cheat: G4 E4° F4 D4
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INFORMATION

1s / quarter note = 10s of sound

How many bits to represent 10s of sound
with 16b samples and 44KHz sampling?

44K Hz x 16b/sample x 10s = 7040K =7Mbits
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FREQUENCY REPRESENTATION

There are other ways to represent
Frequency representation particularly efficient
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Frequencies in Hertz
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FREQUENCY REPRESENTATION

How much information is this musical staff
communicating?

How many keys on piano? - bits/note
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Sounding
Ranges

Larry Solomn: http://solomonsmusic.net/insrange.htm
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CONCLUDE

Can represent common sounds much more
compactly in frequency domain than in time-
sample domain

Frequency domain ~ 120b

Time-sample domain ~ 7Mb
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FREQUENCY REPRESENTATION

How much information is this musical staff
communicating?

How many keys on piano? - bits/note
Let’s say 8b duration

How many bits for 8 notes?
(7b/note+8b/duration) x 8 note = 120 bits?
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LECTURE TOPICS

Teaser: frequency representation
Where are we on course map?
Frequency Domain

Vector Background

The Fourier Series
can represent any signal in frequency domain

References
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COURSE MAP — WEEK 5 WHAT WE DID IN LAB...
MIC
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Music 1 domain

conversion

y sample freq

Week 1: Converted Sound to analog voltage signal
a “pressure wave” that changes air molecules w/ respect to tim:
a “voltage wave” that changes amplitude w/ respect to time
Week 2: Sampled voltage, then quantized it to digital sig.

2 & Sample; Break up independent variable, take discrete ‘samples’
[ \ Quantize: Break up dependent variable into n-levels (neeq/2" bits to digitize)
Week 3: Compress digital signal
<« DIA «<— 10101001101 Use even less bits without using sound quality!
7 Week 4 (upcoming): Before we compress...
7\
speaker MP3 Player  iPhone / Droid Put our ‘digital’ data into another form...BEFORE we compress...less stuff to compress!
13 14
MusiCAL REPRESENTATION
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With this compact notation
Could communicate a sound to pianist

Much more compact than 44KHz time-sample
amplitudes (fewer bits to represent)

Represent frequencies
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TIME-DOMAIN & FREQUENCY-DOMAIN FREQUENCY-DOMAIN

As an example...let's say we have a pure tone Of course, not all signals are this simple
. 1.
If period: T = 1/2 and Amplitude = 3 Volts For example: s(t) = sin(2x2mxt) + 2.sm(27r><t)

s(t) = Asin(2nft) = Asin(2m2t)

3 35 —vons 12 vos
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Frequency . Frequency
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time (s)

Time domain representation Frequency domain representation
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- How about the time-domain?
B Plot sin(2x2mxt)
I.% 34 Plot :-sin(erxt)
= Sum: sin(2x2mxt) + ;—sin(ZnXt)
° Notice how it was easier to
plot the frequency domain
@ representation
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REMEMBER LECTURE 5: PRECLASS 1
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FREQUENCY-DOMAIN

Another example

6 voits

,

0 02 04 08 08 1 12 14 15 18 2
e (s)
The time domain plot on the right is really the sum of 5 sinusoids,
where 5 Hz is the strongest component of the signal

VECTOR BACKGROUND

FREQUENCY-DOMAIN

So far...
we have seen how a signal written as:
a sum of sines of different frequencies
can have a frequency domain representation
Each sine component...
is more or less important depending on its coefficient

Example: s(t) = 1 sin(2x2mxt) + ;-.sin(ant)

Can any arbitrary signal be represented as a
sum of sines?

No. But the idea has potential, let’s explore it!
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VECTOR SPACE

We’re familiar with multi-dimensional spaces
and vector representation
E.g. Cartesian Coordinates in 2 Space
2 dimensions X, Y
Represent points as vector with 2 elements (x,y)
Preclass 4a
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VECTOR SPACE

We’re familiar with multi-dimensional spaces
and vector representation
E.g. Cartesian Coordinates in 2 Space
2 dimensions X, Y
Represent points as vector with 2 elements (x,y)
Can easily extend to 3 Space
(x.y.2)
Harder to visualize, but could
extend to any number of
dimensions
(d1,d2,d3,d4,d5,....)

ORTHOGONAL BAsIs

We can describe any point in the space by a
linear combination of orthogonal basis
elements

E.g. Cartesian Coordinates in 2 Space

x-- [1,0]
y - [0,1]
Any point:

a*x + b*y =[a,b]
Orthogonal — no linear scaling of
one gives the other
Dot products are zero

Combine by linear superposition
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DIFFERENT REPRESENTATIONS

We can also represent points in 2-space in
polar coordinates

A different orthogonal basis
(magnitude, ©)

ESE 150 -- Spring 2021

COMPLEX NUMBERS

Complex Numbers are an example of this
Real dimension
Imaginary dimension

Cartesian version: a+bj )
Polar (Magnitude, angle) version: M X e io
i0—

Euler's Formula: €'Y =cos @ + i sin 0
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CAN CHANGE REPRESENTATIONS

Both Cartesian and Polar Coordinates can
describe points in the same space.

The frequency domain &

THE FOURIER SERIES
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HISTORY...

Fourier series:
Any periodic signal can
be represented as a sum
of simple periodic
functions: sin and cos

sin(nt) and cos(nt)
wheren=1,2,3, ...

These are called the
harmonics of the signal
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FOURIER SERIES — WHY DOES IT WORK?
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The cos(nx) and sin(nx) functions
form an is:
allow us to represent any periodic
signal by taking a /j inati
of the basis functions without
interfering with one another
AKA: superposition works!
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FOURIER SERIES — SQUARE WAVE
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Sines
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Cosines

(falstad.com/fourie|
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FOURIER SERIES — MORE FORMALLY

The Fourier Theorem states that any periodic function f(t)
of period L can be cast in the form:

= nmt nmt
f(t) =ay+ Z (an cos L—+ b,, sin ﬁ
n=1

The constants: a,, a, , and b, are called the Fourier coefficients of f(t)

[also a complex number version that uses
complex coefficient and e’ instead of cos/sin]

FOURIER SERIES — SAWTOOTH WAVE
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FOURIER SERIES (REVIEW OF KEY POINTS)

The idea of the series:

Any PERIODIC wave can be represented as simple sum
of sine waves

2 Caveats:
Linearity:

The series only holds while the system it is describing is lipear_
because it relies on the superposition principle
-aka — adding up all the sine waves is superposition in action
Periodicity:
The series only holds if the waves it is describing are periodic
Non-periodic waves are dealt with by the Fourier Transform
We will examine that in Lecture 9
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NYQuisT BIG IDEAS
Remember we said we needed to sample at Can represent signals in frequency domain
twice the maximum frequency Different basis — basis vectors of sines and cosines
Now see all signals can be represented as a linear sum Often more convenient and efficient than time
of frequencies domain 01 ~ ~

Remember musical staff
...and the frequency components are orthogonal

Can be extracted and treated independently

1) = "7 + Zv:[a,, cos(nt) +b, sin(nt)]
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ENIAC REMINDER
First general-purpose, electronic computer built Feedback
here at Penn Lecture and Lab
Unveiled on Feb. 14, 1946 Lab 4 out
75 years ago on Sunday Use MATLAB to transform data into frequency domain

No class on Friday 2/12
Penn Engagement Day
Lab due on Sunday (2/14)
Moved back so not due on Engagement Day
ENIAC Day on Monday 2/15
https://events.seas.upenn.edu/event/eniacday/
Lab on Monday 2/15
After ENIAC Day event

Symposium to celebrate and learn about on
Monday (2/15)
10:30am-noon, 1:30pm-3pm

ESE 150 - Spring 2021 ESE 150 - Spring 2021

LEARN MORE REFERENCES

ESE325 — whole course on Fourier Analysis S. Smith, “The Scientists and Engineer’s Guide to
ESE224 - signal processing Et'tg'ta;/?g::al Pr‘:c_es‘:ng’ /1927 -I Jan-interacti

. ps://betterexplained.comj/articies/an-interactive-
E_$E2_1 5, 31_9, 419 — reason about belllawor of quide-to-the-fourier-transform/
circuits in time and frequency domains



https://betterexplained.com/articles/an-interactive-guide-to-the-fourier-transform/

