

LECTURE TOPICS

Lab vs. Lecture
Big Picture reminder
Review and preclass
How do we take advantage of psychoacoustics in MP3 Achieve this 6-12x reduction from CD Audio

Review Tricks
Formulate Optimization
Algorithm for Adaptation
References

COMPARE TO LAB

Lab 6
Capture spirit of reducing frequencies
Simplified - only taking loudest fraction in each band
Rather than being rigorous about masking
Or trying to hit some fixed rate
Lecture 11 \& 12
Help understand more what real MP3 encoding looks like
Thinking about fixed rate
And adaptation for variable rate encoding from Huffman
Formulating masking more explicitly But still simplistic
Illustrating Optimization Approaches

Big Picture: Why Care

MP3 shows

We can reduce bits needed too accurately represent music by
12x over PCM samples
1998
Necessary to make MP3 player viable at all on 32MB Flash memory

Small, affordable by masses
Also meant lower bandwidth to stream
2006
Necessary to make Spotify streaming viable
2021
With 64GB phones, maybe not essential for music on iPhone, but..

Big Picture: Why Care

Networks / Internet bandwidth / Cell capacity
Allows us to reduce bandwidth needed for audio
Alternative is
Building out more wires and capacity
Fewer cell calls supported simultaneously in a region
REXIEXX ANR PrECLASSS SETUP/REMINRER
Being efficient with bits
Reduces physical investment needed in wires

Same ideas enable video

Viable to store (many) hours of video on phone/tablet Of increasing resolution: $\mathrm{HD}, 4 \mathrm{~K}$...
Viable to stream video into homes
Zoom, Netflix, AppleTV, ... all enabled by compression

KNOBS WE CAN TURN

Amplitude quantization

Per band
Frequency quantization
Per band?
Frequencies kept (per critical band)
Per band
...and can perform lossless compression

Preclass 1

44,300 samples/s
16b
26ms window
a) How many bits?
$128 \mathrm{~Kb} /$ s stereo $\rightarrow 64 \mathrm{~Kb} /$ s per audio channel
b) How many bits per 26 ms window?
c) ratio?

OPTIMIZATION PROBLEM while maximizing goodness (sound quality)?

Preclass 2

576 frequencies

- 16b amplitude
- 1704b budget
* (frequency,amplitude) pairs to represent
* How many frequencies can we keep?

Conclude: cannot keep all frequencies and hit budget

OPTIMIZATION PROBLEM

How fit in the resource constraints ($128 \mathrm{~Kb} / \mathrm{s}$) while maximizing goodness (sound quality)?

Optimization problems central to engineering

OPTIMIZATION PROBLEM

How fit in the resource constraints ($128 \mathrm{~Kb} / \mathrm{s}$) while maximizing goodness (sound quality)?

Quantify bits used:
Cannot exceed $128 \mathrm{~Kb} / \mathrm{s}$

$$
\sum_{\text {bands }} \sum_{f \in \text { freqs }} B i t s(f)
$$

$=1,704 \mathrm{~b} / 26 \mathrm{~ms}$ frame / channel
W(freq)
0 if below hearing threshold
0 if masked
Value between 0 and 5 if partially masked in critical band Really depend on what already encoded
$\sum_{f \in \text { freqs }} \operatorname{Error}(f) \times W(f)$

GOORNESS/SOUND QUALITY

Error(Amp) $=\mid$ Orig Amplitude - Encoded \mid
Whole OrigAmplitude if dropped
|Orig Amplitude-Quantize(OrigAmplitude,bits)| if quantized

Quantify goodness: minimize
$\sum_{f \in \text { freqs }} \operatorname{Error}(f) \times W(f)$

EXAMPLE WEIGHT FUNCTION W(F)
 W(f)=CBWeight*Mask
 Mask $=0$ if MaxAmp-FreqAmp<4
 (MaxAmp-FreqAmp)/MaxAmap-otherwise
 1 otherwise

For example that follows, don't use second part

ADAPTIVE ReFINEMENT

Rediscovering where to allocate everything every time may be laborious

Often same frequencies persist for more than 26 ms
Maybe we can get close and adjust?
Use critical band allocation from previous frames as a starting point guess
bits, frequencies, quantization
Try initial encoding with that

BIG IDEAS

Can use pyschoacoustics to compress audio

Eliminate portions of signal that human's don't notice

Optimization

Identify Design Space (knobs)
Identify Costs and Constraints
Formulate quantitatively
Algorithms to approach
Iterative/adaptive approach
Deal with effects that aren't completely predictable

Coming Up

Feedback (including Lab 6 part 1)
No lab due today
Monday: Lab 6 continued
Wednesday: Spring Break?!? - no lecture
No office hours
Thursday: no office hours
Next Friday: back for Lecture
Saturday 2-3pm and 6-7pm office hours
Sunday (3/14) formal Lab Due

References

Tutorials on Psychoacoustic Coding (in increasing order of abstraction and generality)
D. Pan, M. Inc, and I.L. Schaumburg. A tutorial on MPEG/audio compression. IEEE
multimedia, 2(2):60-74, 1995.

Nikil Jayant, James Johnston, and Robert Safranek. Signal compression based on models of human perception. Proceedings of the IEEE, 81(10):1385-1422, 1993.
V. K. Goyal. Theoretical foundations of transform coding. IEEE Signal Processing Magazine, 18(5):9-21, 2001.
Lightweight Overview of MP3
Rassol Raissi. The theory behind mp3. Technical report, MP3' Tech, December 2002.
Scientific Basis of MP3 Coding Standard
J. D. Johnston. Transform coding of audio signals using perceptual noise criteria. IEEE Journal on selected areas in communications, 6(2):314-323, 1988.

