

STORER-PROGRAM PROCESSOR

"STORED PROGRAM" COMPUTER

- Can build physical machines that perform any computation.
- Can be built with limited hardware that is reused in time.
- Historically: this was a key contribution of Penn's Moore School
 - ENIAC→ EDVAC
 - Computer Engineers:
 Eckert and Mauchly
 - + (often credited to Von Neumann)

BASIC IDEA

Express computation in terms of a few primitives

- + E.g. Add, Multiply, OR, AND, NAND
- * Provide one of each hardware primitive
- Store intermediates in memory
- Sequence operations on hardware to perform larger computation
- Store description of operation sequence in memory as well – hence "Stored Program"
- By filling in memory, can program to perform any computation

_

ESE150 Spring 2021

MEMORY

RANDOM ACCESS MEMORY

** A Memory:

- Series of locations (slots)

- Can write values a slot (specified by address, WA)

- Read values from (by address, RA)

- Return last value written

Notation:
slash on wire
means multiple bits wide

PROCESSORS

**Single gate extreme to make the high-level point

- Except in some particular cases, not practical

**Usually reuse larger blocks

- Multi-bit Adders

- Multipliers

**Get more done per cycle than one gate

**Now it's a matter of engineering the design point

- Where do we want to be between one gate and full circuit extreme?

- How many gate evaluations should we physically compute each cycle?

WORD-WIDE PROCESSORS

* Common to compute on multibit words

+ Add two 16b numbers

+ Multiply two 16b numbers

+ Perform bitwise-XOR on two 32b numbers

* More hardware

+ 16 full adders, 32 XOR gates

* All programmable gates doing the same thing

+ So don't require more instruction bits

4

ARITHMETIC AND LOGIC UNIT (ALU)

* A common logic primitive is the ALU

- Can perform any of a number of operations on a series of words (strings of bits)

- Operations: Add, subtract, shift-left, shift-right, bitswise xor, and, or, invert,

- Operates on "words"

* Identify a set of control bits that select the operation it forms

- Makes it "programmable"

ALU OPS (ON 8BIT WORDS)

* ADD 00011000 00010100 =

- Add 0x18 to 0x14 result is:
- Add 24 to 20

SE150 Spring 202⁻

ALU OPS (ON 8BIT WORDS)

ADD 00011000 00010100 = 00101100

+ Add 0x18 to 0x14 =0x2C0

Add 24 to 20 =44

SUB 00011000 00010100 = 00000100

Subtract 0x14 from 0x18 .. 0x04

INV 00011000 XXXXXXXX =

+ Invert the bits in 0x18 ...gives us:

SE150 Spring 202

ALU OPS (ON 8BIT WORDS)

XOR 00011000 00010100 = 0001100

 \times xor 0x18 to 0x14 = 0x0C

× ADD 00011000 00010100 = 00101100

+ Add 0x18 to 0x14 =0x2C0

+ Add 24 to 20 =44

× SUB 00011000 00010100 = 00000100

+ Subtract 0x14 from 0x18 .. 0x04

× INV 00011000 XXXXXXXX = 11100111

+ Invert the bits in 0x18 ...0xD7

SRL 00011000 XXXXXXXX =

+ Shift right 0x18 ... gives us:

21

ESE150 Spring 202

ALU OPS (ON 8BIT WORDS)

× ADD 00011000 00010100 = 00101100

+ Add 0x18 to 0x14 =0x2C0

+ Add 24 to 20 =44

* SUB 00011000 00010100 = 00000100

+ Subtract 0x14 from 0x18 .. 0x04

× INV 00011000 XXXXXXXX = 11100111

+ Invert the bits in 0x18 ...0xD7

SRL 00011000 XXXXXXXX = 00001100

Shift right 0x18 ...0x0C

ESE150 Spring

ALU OPS (ON 8BIT WORDS)

× ADD 00011000 00010100 = 00101100

+ Add 0x18 to 0x14 =0x2C0

+ Add 24 to 20 =44

SUB 00011000 00010100 = 00000100

+ Subtract 0x14 from 0x18 .. 0x04

INV 00011000 XXXXXXXX = 11100111

+ Invert the bits in 0x18 ...0xD7

× SRL 00011000 XXXXXXXX = 00001100

+ Shift right 0x18 ...0x0C

× XOR 00011000 00010100 = 0001100

xor 0x18 to 0x14 = 0x0C

30

LEARN MORE

CIS240 – processor organization and assembly
CIS471 – implement and optimize processors
Including FPGA mapping in Verilog
ESE370 – implement memories (and gates)
using transistors

REMINDERS

* Feeback
* Lab 8 due on Friday

8