3/24/21

€cnn

Engineering

LECTURE TOPICS

Setup

Where are we?

Review

Memory

Wide-Word, Stored-Program Processor
Contemporary Processor: ARM

Lecture #16 — Stored-Program Processors

ESE 150 —
DIGITAL AuDio BAsIcs

ESE150 Spring 2021

Based on slides © 2009--2021 DeHon

COURSE MAP — WEEK 9

MIC
Y
’.
> AID >
7/
domain N\
) 88 [QuICK REMINDER
”,
N
‘sample freq pyscho-
\ > 4 acoustics (3)/

s N\
< D/A <— 10101001101

7|
OK speaker MP3 Player / iPhone / Droid

ESE150 Spring 2021

ESE150 Spring 2021
Instruction Memory
[G06000000000000 |
0000000010000
000000010000010
010001000001010
0100010101010
0101101110001
010001000010100

writeback enable, address, value
(irom botto) —— goos to Both memories

Single active
compute element sl
(programmable M

gate) W

Sequence in time

0101100000101
010110011010110
0

Store state in a1
memory foref ot
Use Instruction ol
memory to select
and sequence Feartt
operations ospaz
Can compute a
large number of sl N ., ovn?

ate [3 writeback enable address value

3/24/21

ESE150 Spring 2021

“STORED PROGRAM” COMPUTER

Can build physical machines that perform
any computation.

Can be built with limited hardware that is
reused in time.

STORED-PROGRAM PROCESSOR Historically: this was a key contribution of
Penn’s Moore School

ENIAC-> EDVAC

Computer Engineers: o

Eckert and Mauchly |
(often credited to
Von Neumann)

BAsiC IDEA

Express computation ¥
in terms of a few primitives

E.g. Add, Multiply, OR, AND, NAND
Provide one of each hardware primitive MEMORY
Store intermediates in memory

Sequence operations on hardware to perform
larger computation

Store description of operation sequence in
memory as well — hence “Stored Program”

By filling in memory, can program to perform
any computation

ESE150 Spring 2021 ESE150 Spring 2021

RANDOM ACCESS MEMORY Two PIECES OF A MEMORY
A Memory: Element to remember a value
Series of locations (slots) Way to address/select that element
Can write values a slot (specified by address, WA) Din
Read values from (by address, RA)
Return last value written o Write
WA ———f
L RA —SN]
Notation: RA —
slash on wire
means multiple bits wide Dout Dout

I

CouLD BUILD MEMORY W/ MUXES & LATCHES
... COLLECTION OF REGISTERS

Use latch to remember
(store) values

Perform read select
(addressing) with a
multiplexer

latch inputs

latch
enables

A[1:0]

Latches

Q

OULD BUILD MEMORY W/ MUXES & LATCHES
. COLLECTION OF REGISTERS

Show Decoder logic

Decoder
Write? —
WA[1:0] /A
wO0=Write? & IWA[1] & !WA[0]
1
RA[1:0]

outs

Latches

3/24/21

CouLD BUILD MEMORY W/ MUXES & LATCHES
... COLLECTION OF REGISTERS
Perform write select in
(addressing) with a
decoder [
Write? — o
WA[:01 4 &
RA[1:0]
outs

Latches

CouLD BUILD MEMORY W/ MUXES & LATCHES
. COLLECTION OF REGISTERS

Show Decoder logic

Decoder

w3=Write? & WA[1] & WA[O] [
Write? —1 \o_write? & WA[1] & ! WA[0]
WA[:0] | wi=Write? & IWA[1] & WA[0]
W0=Write? & IWA[1] & IWA[0]

RA[1:0]

outs

ESE150 Spring 2021

Latches

ESE150 Spring 2021

KEY ENGINEERING PROPERTY

Store state compactly in memory

A(memory cell) small Din
A(mem) < A(gate)
Write?
Depends on few
inputs/outputs WA TN
RA —— =]

Memory cells share

inputs and outputs
Dout

RANDOM AccEss MEMORY (RAM)
WITH CAPACITOR MEMORIES
Din
Decoder |
Write? |
T
B
WA 5 v
v
v
RA
Learn more: ESE370 Dout l

EXPAND PROCESSOR

PROCESSORS

ESE150 Spring 2021

WORD-WIDE PROCESSORS

Common to compute on multibit words
Add two 16b numbers

Multiply two 16b numbers

Perform bitwise-XOR on two 32b numbers
More hardware

16 full adders, 32 XOR gates

bi3) al3) b{2] a[2] b{1] a[1] b[0] a[0]

%UUU

VYV

c3) c2) o1 o)

All programmable gates doing the same thing
So don’t require more instruction bits

ESE150 Spring 2021

BUILDING OUT

0000000000000

010001000010100.

Address | 010110000001011
(Program | 0101100101010
Counter) | 100101110000001

100101101000000

writeback enable, address, value
(rom bottom) — goes to Both memories

Data Memory
(Slots)

out

Type--RERD |

Type==WRITE

(rogisters) T

wiiteback enablo a

ESE150 Spring 2021

BEYOND SINGLE GATE

Single gate extreme to make the high-level point
Except in some particular cases, not practical

Usually reuse Iarger blocks
Multi-bit Adders
Multipliers
Get more done per cycle than one gate

Now it’s a matter of engineering the design point
Where do we want to be between one gate and full circuit
extreme?

How many gate evaluations should we physically compute
each cycle?

3/24/21

ESE150 Spring 2021

MuLTIBIT BUs SYMBOLS

b[3:0] a[3:0]

b[3] a[3] b[2] a[2] b[1] a[1] b[0] a[0]
4 a8 2 1 o)
c[3:0] on

Dout

3/24/21

ESE150 Spring 2021 ESE150 Spring 2021

ARITHMETIC AND LOGIC UNIT (ALU) ALU OPs (ON 8BIT WORDS)
A common logic primitive is the ALU ADD 00011000 00010100 =
Can perform any of a number of operations on a Add 0x18 to 0x14 result is:
series of words (strings of bits) Add 24 to 20

Operations: Add, subtract, shift-left, shift-right,
bitswise xor, and, or, invert,
Operates on “words”
Identify a set of control bits that select the
operation it forms

. A B
Makes it “programmable”

op0

opi

op2

op3

ESE150 Spring 2021 ESE150 Spring 2021

ALU OPs (QN 8BIT WQRDS) ALU Ops (QN 8BIT WQRDS)
ADD 00011000 00010100 = 00101100 XOR 00011000 00010100 = 0001100
Add 0x18 to 0x14 =0x2CO0 xor 0x18 to 0x14 = 0x0C
Add 24 to 20 =44 ADD 00011000 00010100 = 00101100
SUB 00011000 00010100 = 00000100 Add 0x18to 0x14 =0x2C0
Subtract 0x14 from 0x18 .. 0x04 Add 24 to 20 =44
INV 00011000 YXOOOXX = SUB 00011000 00010100 = 00000100
Invert the bits in 0x18 ...gives us: Subtract 0x14 from 0x18 .. 0x04
INV 00011000 XXXXXXXX =11100111
Invert the bits in 0x18 ...0xD7
SRL 00011000 XXXXXXXX =
Shift right 0x18 ... gives us:

ESE150 Spring 2021 ESE150 Spring 2021

ALU OPs (ON 8BIT WORDS) ALU OPs (ON 8BIT WORDS)

ADD 00011000 00010100 = 00101100 ADD 00011000 00010100 = 00101100
Add 0x18 to 0x14 =0x2C0 Add 0x18 to O0x14 =0x2CO
Add 24 to 20 =44 Add 24 to 20 =44

SUB 00011000 00010100 = 00000100 SUB 00011000 00010100 = 00000100
Subtract 0x14 from 0x18 .. 0x04 Subtract 0x14 from 0x18 .. 0x04

INV 00011000 XXXXXXXX = 11100111 INV 00011000 XXXXXXXX =11100111
Invert the bits in 0x18 ...0xD7 Invert the bits in 0x18 ...0xD7

SRL 00011000 XXXXXXXX = 00001100 SRL 00011000 XXXXXXXX = 00001100
Shift right 0x18 ...0x0C Shift right 0x18 ...0x0C

XOR 00011000 00010100 = 0001100
xor 0x18 to 0x14 =0x0C

3/24/21

ESE150 Spring 2021

ALU ENCODING

Each operation has some bit sequence

ADD 0000
SUB 0010
INV 0001 A B
SLL 1110
op0
SLR 1100 opi
AND 1000 op2
op3

ESE150 Spring 2021

ALU-BASED WORD-WIDE PROCESSOR

m
o
T A

|
-

Instr
Mem

ESE150 Spring 2021

ALU-BASED WORD-WIDE PROCESSOR

Instr
Mem

ESE150 Spring 2021

BEYOND LINEAR SEQUENCE

So far, processor can run a fixed
sequence

Cannot

Implement a loop
Implement an if-then-else

Instr
Mem

BRANCHING
Allow PC to advance 1
by value other than 1 PC -gl

Could be negative
Allow data to impact
selection

Only load when data bit is 1 Instr
Add Instruction bits
(or instruction) to
control loading

BRANCH if (SRC1[0]==1) to PC+SRC2

ESE150 Spring 2021

BRANCHING

How 1
Pe L]
BR r0 r2 // branch back 12 instrs
/1110
-1

/I need -12 in r2
Instr
Mem ;

BR r0 -12 // branch back 12 instrs

/I compute condition into r0

ESE150 Spring 2021

BRANCHING

How 1

PC fgi]
Sketch

/I compute condition into r0
/INeed TRUE_OFFSET in r7
BR 0 r7
<code else case>

Instr
/I1inr0 Mem
/l'load length of true case into r7 B
BR r0 r7// branch over true
<code true case,
target of TRUE_OFFSET>
<code after loop>

IPoD, ITSYBITSY
PROCESSOR

Compare Al

V] Muttipier [N—/]
*
/ AN

Instr
Mem

N
L /

3/24/21

CONTEMPORARY PROCESSORS

BAsIC ARITHMETIC '
H-d
ADD Rd, Rn, Rm e
Means: Rd=Rn+Rm

Similar: OR, XOR, AND, SUB, MUL
MLA - Multiply Accumulate

MLA Rd,Rm,Rs,Rn

Means: Rd&=Rm*Rs+Rn

(options to use pair of registers for Rd,Rn)

ESE150 Spring 2021

LARGE MEMORY

Add Large Memory for Bulk data storage

Inst
Mom Data In

aary]
Big Memory

|-
!! ata Ou

ESE150 Spring 2021

LOAD-STORE ARCHTECTURE

Add instructions to move data between large
memory and small (Register File)

Data In
Addr

LD Rd,Rsrc
Means: Rd = Mem[Rsrc] Data Ou

ST Rsrc1,Rsrc2
Means: Mem[Rsrc2]=Rsrc1

ESE150 Spring 2021

ARM LOAD-STORE |

LDR Rd, [Rn]
Mean: Rd=Mem[Rn]
STR Rd, [Rn]
Mean: Mem[Rn]=Rd

uuuuuuuu

Data In

Addr

Big Memory

Data Oul

3/24/21

BIG IDEAS

Memory stores data compactly

Storing computational state in memory

memory

Can implement large computations on small
hardware by reusing hardware in time

Can store program control in instruction

Change program by reprogramming memory
Universal machine: Stored-Program Processor

ESE150 Spring 2021

ESE150 Spring 2021

LEARN MORE

CIS240 - processor organization and assembly

CIS471 — implement and optimize processors
Including FPGA mapping in Verilog

ESE370 — implement memories (and gates)

using transistors

REMINDERS

Feeback
Lab 8 due on Friday

ESE150 Spring 2021

