

Easy to produce 0/1 Can control flow of much larger current Stop flow – off Enable flow – on Relay Similar model Input voltage controls switch Mechanical switching

Different (usually larger) voltage range, current

Lower resistance

N-OFF POWERFUL

Many things can control just by turning on or off

How often on or off
When turn on or off

Examples

Temperature – when turn on heater (cooler)
Position – turning on or off motor

SERVO - BASIC FUNCTION

- Can specify a position (0 to 180 degrees)
- * Will rotate shaft to position
- × Applications
 - + Steering
 - + Positioning
 - + Pan/tilt

SERVO – HOW WORK

- * Motor + sensor + control
- * Sense if motor in position
 - + If not, turn on motor in appropriate direction to move closer to position

20

SERVO - CONTROL

- Provide analog input
- Sense with potentiometer
- x Is voltage above or below control target?

MOTIVATE DIGITAL INPUT

- Could provide Analog output from microcontroller with D2A
- * ...but, D2A is somewhat expensive
- Communicate position using single digital output
 - + Look at output over time period
 - + How much of the time period is it high/low?
 - + Use to communicate more than 1 bit of data

22

PWM - PULSE WIDTH MODULATION

- Provide pulses at some fixed frequency (490Hz)
- × Vary how long the pulse is high
 - + Vary the width of the high pulse
- * Use that to communicate value (position)

SERVO

- Puts some control smarts in servo package
- x Takes PWM input to specify position
- Senses shaft rotation and engages motor to move to specified position

24

SERVO SMARTS

- Could just do all this control from processor
 - + Sense position, drive motor
- Often cheaper to offload that little control from processor
 - Including saves pins on (wires to) processor

25

PWM ENCODING WITH DIGITAL LOGIC

* How convert digital number to PWM?

- always @ (posedge PWM_CLK)
 - + cnt<=cnt+1;
 - + PWM<=(cnt<=digital_value)

21

PWM DECODING WITH DIGITAL LOGIC

- * How convert PWM input to digital number?
- * always @ (posedge PWM_CLK)
 - + pwm pos<=pwm pos+1
 - + If (PWM) cnt<=cnt+1
 - + If (pwm_pos==max)
 - x digital_out<=cnt; x cnt<=0;</pre>
 - × pwm_pos<=0;

BIG IDEAS

- Information world can interact with physical world
 - Sense read state of physical world into bits for computation
 - Actuate have bits control physical world
 - \times Turn on/off, move, position
- * Connect sensing and actuation to control
 - Even with noisy actuators and external disturbances

21

LEARN MORE @ PENN

- × Courses
 - + ESE350 Embedded Systems
 - + ESE421 Control for Autonomous Robots

REMEMBER

- × Feedback
- × Lab 10 due today
- * Monday (4/12) Engagement Day
 - + No class
- * Actuation Lab will be following Monday (4/19)

30