
ESE150 Lecture 15 Preclass Exercise Spring 2021

Consider the following piece of C code (or almost Verilog code):

a=getInput(0); // assume this reads a bit from some input wire

b=getInput(1);

c=getInput(2);

o1=a&b | b&c | a&c;

o2=a^b^c;

putOutput(1,o2); // and this places a bit to some output wire

putOutput(0,o1);

Reminder a^b is xor – equivalently ((a&!b)|(!a&b));

1. What operation does this perform?

2. How many 2-input gates (AND, OR, XOR) does it require?

We could write equivalent C broken into primitive operations:

a=getInput(0);

b=getInput(1);

c=getInput(2);

t1=a&b;

t2=b&c;

t1=t1|t2;

t2=a&c;

o1=t1|t2;

t1=a^b;

o2=t1^c;

putOutput(1,o2);

putOutput(0,o1);

In1

Out

In0

Function

Input 0

Input 1

Input 3

Input 4

Input 5

Input 6

Input 7

Input 2

Type==READ

Output 0

Output 1

Output 2

Output 3

Output 4

Output 5

Output 6

Output 7

O
u
tp

u
t
L
o
a
d

 C

o
n
tr

o
l

Type==WRITE

Add 1

 Address
(Program
Counter)

enable address valuewriteback

writeback enable, address, value
(from bottom) −− goes to both memories

(registers)

Instruction Memory

Data Memory
 (Slots)

(In1 bits are read address
 of right memory only)

(In0 bits are read address
 of left memory only)

000000000000000
000000001000001
000000010000010
010001000001010
010001001010100
010111011100011
010001000010100

010110000001011
010110011010110
100101110000001
100101101000000

Diagram is relevant, but don’t need to understand to complete problem on other side.

(Continue other side)

Assign the variables to slots in a memory:
0 1 2 3 4 5 6 7
a b c t1 t2 o1 o2

READ=00; GATE=01; WRITE=11;
AND=0001; OR=0111; XOR=0110; NONE=0000; SEL0=0101

Hint: colors show how Instruction Fields correspond to bits in encoding.

3. Complete missing entries in table (one per column);
This is an implementation of the primitive operation version on previous page. Read
through entries that are there to see what it’s doing. Then complete the missing table
entries.

Instruction Fields Bit
C Description Type FunctionIn0In1Out Enocde

a=getInput(0); read input 0 and put in slot 0 READ NONE 0 0 0 000000000000000
b=getInput(1); read input 1 and put in slot 1 READ NONE 1 0 1 000000001000001
c=getInput(2); read input 2 and put in slot 2 READ NONE 2 0 2 000000010000010
t1=a&b; read value in slot 0 and value in

slot 1, perform an AND on the val-
ues, and store into slot 3

GATE AND 0 1 3 010001000001011

read value in slot 1 and value in
slot 2, perform an AND on the val-
ues, and store into slot 4

GATE AND 1 2 4 010001001010100

t1=t1|t2; read value in slot 3 and value in
slot 4, perform an OR on the val-
ues, and store into slot 3

GATE OR 3 4 3 010111011100011

t2=a&c; GATE AND 0 2 4 010001000010100
o1=t1|t2; read value in slot 3 and value in

slot 4, perform an OR on the val-
ues, and store into slot 5

GATE OR 3 4 5

t1=a^b; read value in slot 0 and value in
slot 1, perform an XOR on the val-
ues, and store into slot 3

GATE XOR 0 1 3 010110000001011

o2=t1^c; read value in slot 3 and value in
slot 2, perform an XOR on the val-
ues, and store into slot 6

010110011010110

putOutput(1,o2); read value in slot 6 and write to
output 1

WRITE SEL0 6 0 1 100101110000001

putOutput(0,o1); read value in slot 5 and write to
output 0

WRITE SEL0 5 0 0 100101101000000

2

