
ESE150 Lecture 16 Preclass Exercise Spring 2021

1. Continuing with our single-gate processor from Lecture 15:

In1

Out

In0

Function

Input 0

Input 1

Input 3

Input 4

Input 5

Input 6

Input 7

Input 2

Type==READ

Output 0

Output 1

Output 2

Output 3

Output 4

Output 5

Output 6

Output 7

O
u
tp

u
t 
L
o
a
d

  
 C

o
n
tr

o
l

Type==WRITE

Add 1

 Address
(Program
Counter)

enable address valuewriteback

writeback enable, address, value
(from bottom) −− goes to both memories

(registers)

Instruction Memory

Data Memory
   (Slots)

(In1 bits are read address 
   of right memory only)

(In0 bits are read address
   of left memory only)

000000000000000
000000001000001
000000010000010
010001000001010
010001001010100
010111011100011
010001000010100

010110000001011
010110011010110
100101110000001
100101101000000

Continue to simulate the processor on the next 4 instructions, by completing the mem-
ory contents after each instruction executes.
Memory is updated at the beginning of the cycle following the operation, so reflect the
memory update for line i (e.g. 4) in line i + 1 (e.g. 5) operating from the memory
contents shown for line i (e.g. 4). (Because of this, you are not executing instruction
8, but you should show what value the memory holds when instruction 8 begins to
executes in the final row.)

Inst.. Instruction Fields Memory Contents

Addr Type FunctionIn0In1Out 0 1 2 3 4 5 6 7

4 GATE AND 1 2 4 1 1 0 1 0 0 0 0

5 GATE OR 3 4 3

6 GATE AND 0 2 4

7 GATE OR 3 4 5

8

(continued on back)



2. Consider word-wide operators working on an 8b-wide word:

• An 8b add behaves as in C or Java (adding the two 8b numbers, giving an 8b
result – modulo 256 if it overflows)

• bit-wise logical operators (like AND, OR) perform the associated logical operators
on the pair of bits in the same bit position

• INV/Invert (bitwise-not) only operates on the Operand 1 input

• a^b is XOR – equivalently ((a&!b)|(!a&b));

Complete table:

Operation Operand 1 Operand 2 Result

ADD 00011000 00010100

SUB 00011000 00010100

INV 00011000 XXXXXXXX

XOR 00011000 00010100

SRL 00011000 XXXXXXXX 00001100

3. This will come up in lecture. Consider the datapath shown that supports data-
dependent branching. This datapath also differs from the one from Lecture 15 (and in
Problem 1) because it stores data in multi-bit words and operates on multi-bit words
using operations like those in Problem 2.

+

ALU

Instr

Mem

1

PC

The basic instruction for branching is: BR SRC1 SRC2
which behaves as follows: If (SRC1[0]==0) then PC=PC+SRC2, else PC=PC+1.
SRC2 is signed, so can be a positive or negative value.
SRC1[0] says we are looking only at the low bit of the data value read from SRC1.

For each of the following consider an instruction sequence to accomplish the task (for
simplicity assume you can preload memory slots with offset values as needed):

(a) How would you unconditionally branch to the top of a loop that is 12 instruc-
tions before the branch instruction?

(b) How would you conditionally branch to the top of a loop based on the value in
memory slot 0 that is 12 instructions before the branch instruction?

(c) How would you implement an if-then-else construct?

2


