Midterm

(!) This is a preview of the published version of the quiz

Started: Mar 7 at 3:06pm

Quiz Instructions

See Midterm Instructions: https://www.seas.upenn.edu/~ese150/spring2021/midterm_details.pdf

Answer Questions 1--4 Based upon the following sampled waveform:

Question 1
 2 pts

Frequency of waveform in Hz ?
\square

Question 2

Sample rate in Hz ?
\square

Question 3

The waveform is correctly sampled.TrueFalse

Inferred frequency from samples in Hz ?

Answer questions $5--8$ based on the following sampled waveform:

Question 5

Frequency of waveform in Hz ?
\square

Question 6

Sample rate in Hz ?
\square

Question 7

2 pts

The waveform is correctly sampled.True

False

Imferred frequency from samples in Hz ?
\square

For the next few questions, consider the 27 symbol quote:

m	a	k	e		t	h	e	
c	o	m	m	o	n		c	a
s	e		s	h	o	r	t	.

This uses 13 unique symbols.

Question 9

If we assign the same number of bits to each of the 13 symbols, how many bits will we need to encode the 27 symbol quote?
\square

According to Shannon Entropy, what is the lower bound on the number of bits needed to represent the collection of 27 symbols for the entire quote?
\square

Question 11

Select an encoding for each symbol to minimize the length of the encoded quote.
You may use each encoding only once (equivalently, you should assign all symbols, and will only be able to assign one symbol to each encoding).

The following table may be useful in planning your assignment before using the canvas-dropdown-matching below to record your solution. You may want to print and fill in the table.

symbol	encoding		symbol	encoding
a		c		
e		h		
k		m		
n		o		
r		s		
t			(period)	
(space)				

101

110

111

0010

0011

0101

0110

01000

01001

01110

01111

Question 12

For your selected encoding, how many bits are required to represent the quote?

For the next set of questions, consider the musical instrument range and piano scale:

Question 13

What is the minimum sample rate in Hz for accurately capturing a Tuba solo?
\square

What is the minimum sample rate in Hz for capturing a piccolo solo?
\square

Question 15

If you only need to represent notes on the scale (corresponding to notes for which there are piano keys), how many bits do you need to represent the frequency of single notes in a Tuba-Piccolo duet?
\square

Assuming the Tuba and Piccolo each play one note at a time that lasts at least 100 ms in a Tuba-Piccolo duet.

Assume you can represent the loudness of each note with 8 bits.
How much smaller can a recording of the notes play in the duet be compared to 16b PCM time-sample recording taken at a 44 KHz sample rate?

Edit View Insert Format Tools Table
12pt \vee Paragraph $\vee \mathrm{B} \quad I \quad \underline{\cup} \vee \underline{\theta} \vee \mathrm{~T}^{2} \vee \mid:$
\square

Consider the following signal made from two sine waves:

This signal is $\mathrm{f}(\mathrm{t})=A \cdot \sin (2 \pi \cdot 250 \cdot t)+B \cdot \sin (2 \pi \cdot C \cdot t)$.

In the next three questions, we ask you to determine A, B, and C.

Given:

i	1	2	3	4	5	6	7	8	9
$f\left(i^{*} 0.001\right)$	0.88	0.23	-0.73	-0.38	0.5	0.38	-0.26	-0.23	0.12
inder 230:i. 0.001$)$									

both are 0 at $\mathrm{i}=0, \mathrm{i}=10$, and $\mathrm{i}=20$

Question 17

What is A ?
\square

Question 18

6 pts

What is C in Hz ?
\square

Question 19

6 pts

What is B ?
\square

Consider critical band 2 from $100--200 \mathrm{~Hz}$.
Assume humans can only distinguish frequencies as different in this range if they differ by $>3 \mathrm{~Hz}$.

Assume humans can only notice amplitude difference as small as 1 dB .

How many bits do you need to represent sounds in this band for humans?

State assumptions and show work.

$$
\begin{aligned}
& \text { Edit View Insert Format Tools Table }
\end{aligned}
$$

\square

For the next few questions, consider the following scenario.

You are a spy sitting in a cafe.
At the table on the right there is a conversation of interest that you hear at 30 dB at your table.

After a time, a loud group comes in and sits at a table on the left that you hear at 50 dB at your table.

Question 21

How does this new group at your left impact your ability to hear the interesting conversation on your right?

Edit View Insert Format Tools Table

Question 22

3 pts

Would it help to record the audio at your table to an MP3? Why or why not?

Edit View Insert Format Tools Table

Question 23

3 pts

Would it help to record the audio at your table in PCM? Why or why not?

Edit View Insert Format Tools Table

```
\(12 \mathrm{pt} \vee\) Paragraph \(\vee\) B I
\(\underline{\underline{U}} \underline{\square} \sim \sim\) \(T^{2} \vee\) 
```

\square

Question 24

8 pts

Sketch how you could program audio processing (perhaps for your phone) to recover more of the interesting conversation on the right than you were able to hear unaided?

Edit View Insert Format Tools Table
$12 \mathrm{pt} \vee$ Paragraph $\vee\left|\mathrm{B} \quad I \quad \underline{\cup} \underline{\mathrm{~A}} \vee \& \vee \mathrm{~T}^{2} \vee\right|:$

Reference for next set of questions:

A chicken, a man, and an little brown bat walk into a bar zoom session....
Assume each can "speak" in the same range as their hearing. Here speak means produce sounds that can be assigned some meaning.

Which animals can communicate with each other directly?chicken and humanchicken and little brown bat
human and little brown bat

Question 26

12 pts

Consider designing a zoo-session (zoom optimized for communication among animals).

How could this zoo session allow any animals (like the chicken, human, and little brown bat) to communicate with each other?

Assume each animal is at its own, personal zoo-client terminal.
Sketch the basic processing your zoo-client could perform to allow the animals to communicate.

Edit View Insert Format Tools Table

```
12pt~ Pargagh }~\textrm{B}I\underline{\cup}\underline{\underline{Q}}~\underline{\Omega}~\mp@subsup{T}{}{2}
```

\square

[^0]
(it) 0 words </> \nearrow

:::

Question 27

Use this space for any derivation details where you want to show your work for potential partial credit for questions that don't have such space.

Edit View Insert Format Tools Table

\square

Question 28

I complied with the University of Pennsylvania Code of Academic Integrity in completing this exam.
https://catalog.upenn.edu/pennbook/code-of-academic-integrity/TrueFalse

[^0]: p

