

TEASER = BORENT RETEBENT × How do these work?

 https://www.amazon.com/Ultrasonic-Repelling-Electronic-Repellent-Squirrels/dp/B081F5WL6W/ref=sr 1 20?dchild= 1&keywords=ultrasonic+rodent+repeller&qid=1 613513635&sr=8-20

3

OBSERVE

* There are sounds we cannot hear + Depends on frequency

- + Human Hearing Limits
- + Critical Bands (Frequency bins)
- + Next Lab
- × References

WHAT IS PSYCHOACOUSTICS?

× Scientific study of sound perception

- Branch of science studying the psychological and physiological responses associated with sound
- + Also, considered a branch of: psychophysics
- Human physical (and neurological) mechanism for sound perception
- Why study sound & human perception?
 - Example: FREQUENCY vs. PITCH × Frequency of sound: "how often" air particles vibrate (Hz)
 - Pitch of sound: the sensation of frequency
 - * How our brains "interpret" the frequency of a sound
- Things may "sound" one way...
 - + ...but be interpreted by our brains very differently!

10

PSYCHOACOUSTICS & DIGITAL MUSIC

- * How does psychoacoustics relate to MP3?
- The "consumer" of an MP3 is the human ear...
 Knowing more about brain's interpretation of sound...
 ...helps us remove things human's can't hear anyway
- Mahar and a second for the second sec
- We've used some of this in our system already:
 Limit of human perception of sound: 20 Hz to 20,000 Hz
 We put an anti-aliasing filter limiting incoming audio
 - + Fixes our sampling rate, less data to store as a result!

11

OUR STUDY OF PSYCHOACOUSTICS

- $\,\times\,$ Structure of Human Ear / encoding signals to brain
- * Human Hearing Limits
- × Critical Bands
- × Frequency Bins
- Masking (Spatial vs. Temporal) [next week]
- * Applied Psychoacoustics [following week]
 - Using all of the above to build...the "Psychoacoustical Model"
 Perceptual Coding in MP3 (using the model to compress MP3s)

14

<section-header><section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><section-header>

16

- × Our ear works in the frequency domain.
- * We could consider devices that

- + Directly produced frequencies
 - Collection of vibrators
 - * Tuning forks
 - * Strings
 - Pipes
 ...sound familiar?

CRITICAL FREQUENCY BANDS - HOW MANY?													
× "Bark" scale –								Bandwi Ith (Hz)					
 Maps frequency 			20		13	1850	2000	280					
intervals into their					14	2150	2320	320					
respective critical	1	50	100	80	15	2500	2700	380					
band number	2	150	200	100	16	2900	3150	450					
	3	250	300	100	17	3400	3700	550					
	4	350	400	100	18	4000	4400	700					
	5	450	510	110	19	4800	5300	900					
	6	570	630	120	20	5800	6400	1100					
	7	700	770	140	21	7000	7700	1300					
	8	840	920	150	22	8500	9500	1800					
	9	1000	1080	160	23	10500	12000	2500					
	10	1170	1270	190	24	13500	15500	3500					
	11	1370	1480	210									
	12	1600	1720	240									

CRITICAL FREQUENCY BANDS – HOW MANY?													
"Bark" scale –								th (Hz)					
 Maps frequency 			20	112)	13	1850	2000	280					
intervals into their					14	2150	2320	320					
respective critical	1	50	100	80	15	2500	2700	380					
band number	2	150	200	100	16	2900	3150	450					
+ 24 frequency bins	3	250	300	100	17	3400	3700	550					
(or "barks") get	4	350	400	100	18	4000	4400	700					
wider as frequency	5	450	510	110	19	4800	5300	900					
increases!	6	570	630	120	20	5800	6400	1100					
	7	700	770	140	21	7000	7700	1300					
	8	840	920	150	22	8500	9500	1800					
	9	1000	1080	160	23	10500	12000	2500					
	10	1170	1270	190	24	13500	15500	3500					
	11	1370	1480	210									
	12	1600	1720	240									
								27					

FREQUENCY QUANTIZATION Frequency Resolution...(bands) In 1000 Hz to 2000 Hz octave... Brain can't perceive changes in frequency smaller than 3.6 Hz What does this tell us about frequency quantization?

Sound Intensity in (DB) - "Loudness"

× Loudness –

- + subjective perception of intensity of sound
- × Intensity
 - Sound power per unit area
- Does loudness change with frequency?
 - + Yes! Scientist: Harvey Fletcher (1940)
 - Measured loudness vs. frequency (Auditory Thresholds)
 Same 'amplitude' sound can sound very quiet or really loud
 All depends on its frequency
 - Turns out...
 - We are very sensitive to frequencies from 1kHz to 5kHz \star They don't have to be 'intense' for us to hear them...why??

38

39

DEMONSTRATION

- × Same demo as before: 20 Hz to 20kHz
 - Instead of thinking about frequency cutoff (range)
 - Think instead about how "loud" the sounds at different frequencies are...
 - \times Which 'band' sounds 'loudest' to you?
 - $\scriptstyle \times$ Note: they are all at same amplitude, so equally intense
 - \times But we perceive sounds in 1 kHz to 5 kHz to be louder!

40

41

BIG IDEAS

- Human hearing mechanism directly encodes frequency
 - By position on Cochlea
 - + Frequency domain representation is the natural one

Differential sensitivity by frequency

- + Hear some frequencies louder than others
- + Useful to work with frequency representation to determine
 - × What's important to keep
 - × What can discard

LEARN MORE

- BIBB417 Visual Processing
 + Same kind of look at physiology, but for vision
- LING520 Phonetics 1
 Focus on speech, includes both hearing and production

ADMIN/COMING UP

- × Feedback
- × Lab today
 - + Use MATLAB to get into frequency domain
- × Monday: Fourier Math
 - Get things into the frequency domain
- × Next Wednesday: Masking
 - + Application of psychoacoustics -- critical bands
- × In Lab Next Wednesday
 - + Measure sensitivity and masking effects

45

44

REFERENCES

- × Physical Ear:
- + R. Munkong and B.-H. Juang. IEEE Sig. Proc. Mag., 25(3):98–117, 2008 **Filter Bank:**
- + http://www.ugr.es/~atv/web_ci_SIM/en/seccion_4_en.htm **Bark Scale:**
 - + [E. Zwicker. J. Acoust. Soc.Am., 33(2):248, February 1961]
- × DB Chart: