

1

3

5

TEASER = DOG WHISTLE
What is special about a dog whistle?
https://www.youtube.com/watch?v=dkOHsvQ7m_E

2

4

LECTURE TOPICS

Part 1
Motivation: hearing range
Where are we on course map?
Psychoacoustics: basics
Structure of Human Ear / encoding signals to brain
Part 2: psychoacoustics model and implications Engineering Model
Human Hearing Limits
Critical Bands (Frequency bins)
Next Lab
References

7

OUR STTUDY OF PŞCh OACOUSTICS

Structure of Human Ear / encoding signals to brain Human Hearing Limits

Critical Bands
Frequency Bins
Masking (Spatial vs. Temporal) [next week]
Applied Psychoacoustics [following week]
Using all of the above to build...the "Psychoacoustical Model"
Perceptual Coding in MP3 (using the model to compress MP3s)

14

COCHLEA ANIMATION

https://www.youtube.com/watch?v=dyenMluFa Uw

15

TAKE-AWAY
Our ear works in the frequency domain.

We could consider devices that
Directly recorded frequencies Collection of resonators?

Directly produced frequencies
Collection of vibrators
Tuning forks
Strings
Pipes
.sound familiar?

- different stereovilli (Hairs) resonate at different frequencies - our ear performs Fourier Transform!

17

20

22

24

TIME ROMAIN ADVANTAGE?

http://www.bluebookofpianos.com/types.html
https://www.dimensions.guide/elementapple-iphone-6s-6s-plus

21

23

25

26

Rifferent Bands								
Bandsson4002004			x		mo	迷	Iom	
			20			1850	200	
			100	80		2150	2320	
		150	200	100		2900	3150	
		250	300	100		3400	370	
		350	400	100		4000	4400	
		450	510	110		4800	5300	
		570	${ }^{630}$	120		5800	6400	
		700	770	${ }^{140}$		7000	7700	
		840 1000	920 1080	150 160		${ }^{8500}$	9500	
		1170	1270	190	${ }_{24}^{23}$	13500	15500	
		1370 1600	1480 1720					

Frequency quantization

Frequency Resolution...(bands)
In 1000 Hz to 2000 Hz octave.
Brain can't perceive changes in frequency
smaller than 3.6 Hz
What does this tell us about frequency quantization?

32

SOQUNR INTENSITY \& LOURNESSS

34

Physical Ear to Engineering Moret

Limits of Human Hearing...easy to see from Cochlea Cochlea only so long.. lowest frequencies: 20 Hz Highest frequencies: 20 kHz
Also helps us understand 'selectivity'
Our brain can choose to 'listen' to output of various filters
Example: At a party, but you can concentrate on conversation!

33

37

SOUND INTENSITY IN (DB) = "LOUDNESS"

Loudness -

subjective perception of intensity of sound
Intensity -
Sound power per unit area
Does loudness change with frequency?
Yes! Scientist: Harvey Fletcher (1940)
Measured loudness vs. frequency (Auditory Thresholds)
Same 'amplitude' sound can sound very quiet or really loud All depends on its frequency
Turns out.
We are very sensitive to frequencies from 1 kHz to 5 kHz They don't have to be 'intense' for us to hear them...why??

38

39

41

BIG IDEAS

Human hearing mechanism directly encodes frequency

By position on Cochlea
Frequency domain representation is the natural one
Differential sensitivity by frequency
Hear some frequencies louder than others
Useful to work with frequency representation to determine

What's important to keep
What can discard

LEARN MORE
BIBB417 - Visual Processing Same kind of look at physiology, but for vision LING520 - Phonetics 1 Focus on speech, includes both hearing and production

44

Admin/Coming up

Feedback

Lab today
Use MATLAB to get into frequency domain
Monday: Fourier Math
Get things into the frequency domain
Next Wednesday: Masking
Application of psychoacoustics -- critical bands
In Lab Next Wednesday
Measure sensitivity and masking effects

45

