3/21/22

Penn

Engineering

LECTURE TOPICS

Setup

Where are we?

Review

Memory

Wide-Word, Stored-Program Processor
Contemporary Processor: ARM

Lecture #16 — Stored-Program Processors

ESE 1 50 - ESE150 Spring 2022
DIGITAL AuDIO BAsICS

COURSE MAP — WEEK 9

domain

comversion (5.6 | g QuIcK REMINDER
s 2,
Sens® 9@@
\sample freq pyscho-
\ 2 2 acoustics (3)/

\ .

OK sieaker MP3 Player / iPhone / Droid

ESE150 Spring 2022

[000000000000000 |
REVIEW b PRECLASS 1

B G &0 1 3 1 1 0 o 0
Can compute a @u::? §g§§i§§?§§§‘g§i§. {irom botiom) —— qoes {0 both memries 2 T‘ ; i g 1 an =
Iga;%es nug;ber of S SMENENE

w
Single active T‘T | (In) bits are read address G | 3 4 5
‘"k | Urd‘mg’s’:vemread;‘(‘idress

compute element ! s h
g:;%g)]rammable oo -
Sequence in time —H— s
Store state in Tipo--RERD i o7 =
memory s oo
Use Instruction §£2
memory to select ouans .
and sequence o oueu?
operations wieback enabie address value

3/21/22

ESE150 Spring 2022

“STORED PROGRAM” COMPUTER

Can build physical machines that perform
any computation.

Can be built with limited hardware that is
reused in time.

STORED-PROGRAM PROCESSOR Historically: this was a key contribution of
Penn’s Moore School

ENIAC-> EDVAC
Computer Engineers:
Eckert and Mauchly
(often credited to
Von Neumann)

BAsic IDEA

Express computation [
in terms of a few primitives

E.g. Add, Multiply, OR, AND, NAND
Provide one of each hardware primitive MEMORY
Store intermediates in memory

Sequence operations on hardware to perform
larger computation

Store description of operation sequence in
memory as well — hence “Stored Program”

By filling in memory, can program to perform
any computation

ESE150 Spring 2022 ESE150 Spring 2022

RANDOM ACCESS MEMORY KEY ENGINEERING PROPERTY
A Memory: Store state compactly in memory
Series of locations (slots)
Can write values a slot (specified by address, WA) A(memory cell) small Din
Read values from (by address, RA) A(mem) < A(gate)
Return last value written > Write?
e Depends on few
" inputs/outputs A S
RA +—
Notation: " Memory cells share
slash on wire inputs and outputs
means multiple bits wide Dout Dout
T L
11 18

Part 2

EXPAND PROCESSOR

19

PROCESSORS

21

ESE150 Spring 2022

WORD-WIDE PROCESSORS

Common to compute on multibit words
Add two 16b numbers
Multiply two 16b numbers
Perform bitwise-XOR on two 32b numbers
More hardware ‘

b(3]
U U U U
16 full adders, 32 XOR gates :j V V V
|3 c|2] 1 |0

All programmable gates doing the same thing
So don’t require more instruction bits

al3] bf2] a[2) b[1) a[1] ©l0] a(0]

23

3/21/22

ESE150 Spring 2022

BUILDING OUT Somomomon
Deliberately simple - 7o o] e
; oo
Single gate ogg amor
Lacks many things 1" [s o read s
expect from processors o [[(0 i areread adaess
--- that need to run C code -
...or Java, Python... Fnctin o2
1 out Input 5.
Type--WRITE Quptd
— T Qe
20

20

ESE150 Spring 2022

BEYOND SINGLE GATE

Single gate extreme to make the high-level point
Except in some particular cases, not practical

Usually reuse Iarger blocks
Multi-bit Adders
Multipliers
Get more done per cycle than one gate

Now it’s a matter of engineering the design point
Where do we want to be between one gate and full circuit
extreme?

How many gate evaluations should we physically compute
each cycle?

22

ESE150 Spring 2022

MULTIBIT BUS SYMBOLS

b[3:0] a[3:0]

4

b[3] a[3] b[2] a[2] b[1] a[1] b[0] a[0]

AR

c[3] cf2] c[1] clo]
c[3:0] oin
[
RA ——]

ESE150 Spring 2022

ARITHMETIC AND LOGIC UNIT (ALU)

A common logic primitive is the ALU
Can perform any of a number of operations on a
series of words (strings of bits)
Operations: Add, subtract, shift-left, shift-right,
bitswise xor, and, or, invert,
Operates on “words” —fixed number of bits — e.g. 16
Can interpret as number or address
Identify a set of control bits that select the
operation it forms A B

Makes it “programmable” gg?
op2
op3

25

ESE150 Spring 2022

ALU OPS (ON 8BIT WORDS)

ADD 00011000 00010100 = 00101100
Add 0x18 to 0x14 ~ =0x2CO
Add 24 to 20 =44
SUB 00011000 00010100 = 00000100
Subtract 0x14 from 0x18 .. 0x04
INV 00011000 XXXXXXXX =
Invert the bits in 0x18 ...gives us:

ALU OPS (ON 8BIT WORDS)

ADD 00011000 00010100 = 00101100
Add 0x18 to Ox14 =0x2C0
Add 24 to 20 =44

SUB 00011000 00010100 = 00000100
Subtract 0x14 from 0x18 .. 0x04

INV 00011000 XXXXXXXX =11100111
Invert the bits in 0x18 ...0xD7

SRL 00011000 XXXXXXXX = 00001100
Shift right 0x18 ...0x0C

XOR 00011000 00010100 = 00001100

3/21/22

ESE150 Spring 2022

ALU OPSs (QN 8BIT WORDS)

ADD 00011000 00010100 =
Add 0x18 to 0x14 resultis:
Add 24 to 20

xor 0x18 to 0x14 = 0x0C

29

ESE150 Spring 2022

ALU OPS (ON 8BIT WORDS)

ADD 00011000 00010100 = 00101100
Add 0x18 to 0x14 =0x2C0
Add 24 to 20 =44

SUB 00011000 00010100 = 00000100
Subtract 0x14 from 0x18 .. 0x04

INV 00011000 XXXXXXXX =11100111
Invert the bits in 0x18 ...0xD7

SRL 00011000 XXXXXXXX = 00001100
Shift right 0x18 ...0x0C

28

ESE150 Spring 2022

ALU ENCODING

Each operation has some bit sequence

ADD 0000
SUB 0010
INV 0001
SLL 1110

op0
SLR 1100 op1
AND 1000 op2

op3

30

3/21/22

ESE150 Spring 2022

ALU-BASED WORD-WIDE PROCESSOR

ESE150 Spring 2022

ALU-BASED WORD-WIDE PROCESSOR

}

o

Instr
Mem

32

ESE150 Spring 2022

BEYOND LINEAR SEQUENCE

So far, processor can run a fixed
sequence

Cannot

Implement a loop
Implement an if-then-else

Instr
Mem

ESE150 Spring 2022

BRANCHING

Allow PC to advance 1
by value other than 1 PC

Could be negative

Instr
Mem

Instr
Mem

ESE150 Spring 2022

BRANCHING

Allow PC to advance 1
by value other than 1 PC

Could be negative
Allow data to impact
selection e

Only load when data bit is 1 BT

35

ESE150 Spring 2022

BRANCHING

Allow PC to advance !

by value other than 1 PC
Could be negative

Allow data to impact

selection -
Only load when data bit is 1 LT

Add Instruction bits

(or instruction) to
control loading

36

3/21/22

ESE150 Spring 2022

ESE150 Spring 2022

BRANCHING BRANCHING

ﬁllowI PC t’?had‘tlt?nc?l 1 Given instruction: BR SRC1 SRC2
y value other than PC BRANCH if (SRC1[0]==1) to PC+SRC2
Could be negative 1

. How
Allow data t t
ow data to impac pC _gl

selection

Only load when data bit is 1
Add Instruction bits
(or instruction) to
control loading

Instr
Mem

Instr
Mem

BRANCH if (SRC1[0]==1) to PC+SRC2

37 38

ESE150 Spring 2022

ESE150 Spring 2022

BRANCHING BRANCHING
Given instruction: BR SRC1 SRC2 How 1
5§$NCH if (SRC1[0]==1) to PC-laSRCZ PC @_I

Pc -]
|1
Instr
BR RO R1 // branch back 10 instrs | Mem
i« /I compute condition into r0 %
Instr
Mem /I R1 hold -11
BR RO R1 i

/I RO hold 1, R1 hold -11

39 40

ESE150 Spring 2022

BRANCHING BRANCHING

ESE150 Spring 2022

if (condition) 1 How 1
{true-case} PC PC
else Sketch
/I compute condition into RO
{false-case} /INeed TRUE_OFFSET in R7
after-loop et BR RO R7 Bt
<false-case-code>
Inst Inst
How e I e
B /I'load length of true case into R7 B
BR RO R7// branch over true
<true-case-code,

target of TRUE_OFFSET>
<after-loop-code>

CONTEMPORARY PROCESSORS

43

3/21/22

IPoD, ITSYBITSY
PROCESSOR

Compare A

Instr
Mem

ESE150 Spring 2022

BAsIC ARITHMETIC

Instr

ADD Rd, Rn, Rm e
Means: Rd=Rn+Rm

Similar: OR, XOR, AND, SUB, MUL
MLA - Multiply Accumulate

MLA Rd,Rm,Rs,Rn

Means: Rd=Rm*Rs+Rn

(options to use pair of registers for Rd,Rn)

45

ESE150 Spring 2022

LARGE MEMORY

Add Large Memory for Bulk data storage

Inst
Mem Data In

AGary y
Big Memory

s
46

ESE150 Spring 2022

LOAD-STORE ARCHTECTURE

Add instructions to move data between large
memory and small (Register File)

ol
Vem Data In
Addr
Big Memory
Data Ou

LD Rd,Rsrc
Means: Rd = Mem[Rsrc]

ST Rsrc1,Rsrc2
Means: Mem[Rsrc2]=Rsrc1

47

ESE150 Spring 2022

ARM LOAD-STORE |

LDR Rd, [Rn]

Mean: Rd=Mem[Rn]
STRRd, [Rn]

Mean: Mem[Rn]=Rd

Data In

adr

nE? T“E RENIN
Big Memory —_

Data Oul

48

3/21/22

ESE150 Spring 2022 ESE150 Spring 2022

BIG IDEAS LEARN MORE

Memory stores data compactly CIS240 — processor organization and assembly
Can implement large computations on small CIS471 — implement and optimize processors
hardware by reusing hardware in time Including FPGA mapping in Verilog

Storing computational state in memory ESE370 — implement memories (and gates)
Can store program control in instruction using transistors
memory

Change program by reprogramming memory

Universal machine: Stored-Program Processor

o] =]
49 50

ESE150 Spring 2022

REMINDERS

Feeback including lab

Lab 7 due today

Lab 8 on Wednesday
Posted on syllabus
Back to using ItsyBitsy

Prelab on Arduino software you installed on your
computer for Lab 1

Bring kit to lab

]
51

