

SPEAKERS/MICROPHONES x Can sense the world Physical effect (position) Convert to voltage ... to bits Can manipulate the world + Bits → voltage + Voltage causes physical movement

5 6

SWITCH Can easily give a high or low input Connected short to ground (0) + Unconnected, weakly pulled up to high (1) × Read on input pin Use to sense position Did something make contact to actuate switch? * What can we detect/sense with just a switch?

8

10

POTENTIOMETER × Variable Resistance + Based on position, different amount of resistance across $+ R = \rho L/A = R_0 * L$ $R \sim = R_0 * 2\pi r * (degrees/360)$

PRECLASS 1 × Voltage at ADC Input + Rin=10 Ohm? + Rin=10K Ohm? × V=I*R * No current flows into ADC in × I(Rin) = I(Rref) * For Rin < Rref, where is most of voltage? * For Rin > Rref, where is most of voltage?

9

PRECLASS 1 × V=I*R × I=5V/(Rin+Rref) × Vadc=I*Rref × Vadc = 5(Rref / (Rin+Rref)) * Vadc = 5(1000 / (Rin+1000))Rref=1K Ohm × Voltage at ADC Input + Rin=10 Ohm? + Rin=10K Ohm?

SENSE POSITION Variable Resistance + Based on position, different amount of resistance across × Voltage Divider Output voltage depends on potentiometer position/resistance * Get analog voltage out × Feed to A2D * What kinds of rotational positions might we sense?

11 12

ON-OFF SWITCH

* Logic produces a 0/1

* Can control flow of much larger current

- Stop flow – off
- Enable flow – on

* Transistors

- Voltage on input (gate) controls current flow (resistance) between source and drain

13 14

Can control flow of much larger current

Stop flow – off
Enable flow – on

Transistors

Voltage on input (gate) controls current flow (resistance) between source and drain
Simplified model
Vgate>Vref – R=Rtrans
Vgate<Vref – R=infinite

ON-OFF SWITCH

* Easy to produce 0/1

* Can control flow of much larger current

- Stop flow – off
- Enable flow – on

* Relay

- Similar model
- Input voltage controls switch
- Mechanical switching
- Lower resistance
- Different (usually larger) voltage range, current

16

15

ON-OFF POWERFUL

* Many things can control just by turning on or off

- How often on or off

- When turn on or off

* Examples control with On-Off?

- Temperature – when turn on heater (cooler)

- Position – turning on or off motor

MOTOR — ABSTRACT VIEW

** Applying a Voltage (providing current) across a motor causes it to spin

** Magnitude of current determines how fast

** Direction of current controls direction

Pictures from:
https://en.wikipedia.org/wiki/Electric_motor#/media/File:Electric_motor.gif
https://commons.wikimedia.org/wiki/File:Electric_motor_cycle_2.png

17

19 20

SERVO - BASIC FUNCTION

* Can specify a position (0 to 180 degrees)

* Will rotate shaft to position

* Where might we use?

+ Steering
+ Positioning
+ Pan/tilt

21 22

SERVO - CONTROL

* Motor moves shaft

* Sense position of shaft with potentiometer

* Use to decide if need to move

23 24

SERVO - CONTROL x Compare with a reference Assume comparator computes: Vout=A*(V+ - V.) Vout = $A^*(V_{control} - V_{potentiometer})$ What is Vout when $V_{potentiometer} < V_{control}$? What is Vout when Vpotentiometer>Vcontrol? To Motor

25

MOTIVATE DIGITAL INPUT

Could provide Analog output from microcontroller with D2A

- * ...but, D2A is somewhat expensive
- * Communicate position using single digital output
 - Look at output over time period
 - + How much of the time period is it high/low?
 - + Use to communicate more than 1 bit of data

28

26

27

SERVO

- * Puts some control smarts in servo package
- * Takes PWM input to specify position
- * Senses shaft rotation and engages motor to move to specified position

30

PWM - PULSE WIDTH MODULATION

Use that to communicate value (position)

Vary how long the pulse is high

Vary the width of the high pulse

Provide pulses at some fixed frequency (490Hz)

SERVO SMARTS

- Could just do all this control from processor
 - Sense position, drive motor
- Often cheaper to offload that little control from processor
 - + Including saves pins on (wires to) processor

Preclass 3:

Percentage of time

each case is high?

29

PWM ENCODING WITH DIGITAL LOGIC * Set PWM CLK = slots*PWM freq. So, if use PWM_freq=490Hz and 8 slots PWM CLK freq = 3920 Hz * How convert digital value to PWM sequence? * always @ (posedge PWM_CLK) + cnt<=cnt+1; + PWM<=(cnt<=digital_value);

32

PWM DECODING WITH DIGITAL LOGIC * How convert PWM input to digital number? * always @ (posedge PWM CLK) + pwm_pos<=pwm_pos+1 + If (PWM) cnt<=cnt+1 + If (pwm_pos==max) digital out <= cnt; cnt<=0; pwm_pos<=0;

SERVO REVIEW Servo = motor+sensor+control Takes PWM input to specify position Control: Senses shaft rotation and engages motor to move to specified position

33 34

BIG IDEAS * Information world can interact with physical world Sense – read state of physical world into bits for computation Actuate - have bits control physical world Turn on/off, move, position Connect sensing and actuation to control Computers support computation to realize control and close-the-loop Even with noisy actuators and external disturbances

LEARN MORE @ PENN × Courses ESE350 - Embedded Systems ESE421 - Control for Autonomous Robots

35 36

REMEMBER

* Feedback

* Lab 10 today

* Actuation Lab next Wednesday