
ESE 1500 – Lab 06: Perceptual Coding

ESE 150 – Lab 6 Page 1 of 27

LAB 06

In this 2-week lab we will do the following:

1. Use Matlab to sample three audio files in .WAV format (2/27)
2. Plot the samples in time and frequency domain before any compression (2/27)
3. Analyze the DFT of the samples and drop masked signals

a. Semi-automatically (2/27)
b. Write a function to drop masked signals (at least start on 2/27)

4. Perform Huffman Encoding before and after dropping samples (3/13)
5. Analyze efficiency of your compression algorithm (3/13)

You will work in the same teams for the entire lab (both weeks).
The final lab report is due on 3/20/2023.

ESE 1500 – Lab 06: Perceptual Coding

ESE 150 – Lab 6 Page 2 of 27

Background:

In this lab, you will apply perceptual coding. Recall that perceptual coding is using your knowledge
of psychoacoustics (how human’s interpret sound) to encode your audio data in a more succinct
way. In Lab 5 you performed some classic psychoacoustic experiments. One in particular is
frequency masking.

Recall that frequency masking is when one tone is so loud that it “drowns out” other tones of the
same or nearby frequencies? The pictures below show an example of that happening. Notice that
some tones are so loud that other tones that are not as loud are “masked.” In the picture on the
right, we’ve used that principal to “drop” or zero-out certain tones. Since they are “masked” no one
will be able to hear them (thanks to psychoacoustics), so instead of storing these tones, we drop
them (or zero-them-out) to make it so there is less data to store. It’s a form of lossy compression
that is used in the MP3 algorithm.

Dropping Samples using psychoacoustic analysis

BEFORE psychoacoustic analysis is performed AFTER psychoacoustic analysis is performed

ESE 1500 – Lab 06: Perceptual Coding

ESE 150 – Lab 6 Page 3 of 27

Remember also that masking can be different for different frequency bins. Recall the table below
that shows the 24 critical band frequency bins human hearing is divided into.

Number Center Freq. (Hz) Cut-off Freq. (Hz) Bandwidth (Hz)
 20

1 50 100 80
2 150 200 100
3 250 300 100
4 350 400 100
5 450 510 110
6 570 630 120
7 700 770 140
8 840 920 150
9 1000 1080 160

10 1170 1270 190
11 1370 1480 210
12 1600 1720 240
13 1850 2000 280
14 2150 2320 320
15 2500 2700 380
16 2900 3150 450
17 3400 3700 550
18 4000 4400 700
19 4800 5300 900
20 5800 6400 1100
21 7000 7700 1300
22 8500 9500 1800
23 10500 12000 2500
24 13500 15500 3500

Today in lab, you’ll take time-sampled audio and go through it frequency-bin by frequency-bin and
perform your own psychoacoustic analysis. You will look for signals that are masked. If they are
masked, you will drop them (or zero-them-out). Then you’ll convert your frequency domain data
back to the time domain and listen to your modified audio file to see if you can notice the difference!
The more tones you drop due to masking, the smaller your audio file will become.

Once you’ve completed the task of dropping masked tones, you’ll run the Huffman encoding
algorithm on it and see just how much “redundancy” is now in your audio file that can be reduced

ESE 1500 – Lab 06: Perceptual Coding

ESE 150 – Lab 6 Page 4 of 27

with standard compression; further reducing your audio sample’s file size. By applying a lossy and
lossless compression scheme to your original audio file, you’ll have gone through a very similar
process as to what is done in an MP3 file! In this lab, we’ll just concentrate on frequency masking,
but other tricks (like temporal masking) are used in the true MP3 algorithm. But this will give us a
good sense of what MP3 is doing and how it achieves the compression ratios that it boasts!

MATLAB fft and ifft

For this lab it is very important to understand how MATLAB’s fft and ifft functions work. Make sure
to read the documentation for these functions, specifically focusing on what their inputs and outputs
are.

An important concept here is that of symmetric arrays. In order to speed up computation, fft outputs
(and ifft takes as input) a symmetric array, where the length of the array is equal to the length of the
samples_time, the first half of the array contains the Fourier transform data from 0 Hz to the
Nyquist frequency, and the second half of the array contains the complex conjugate of the first half
(position length(samples_time)/2 + 1 + i contains the complex conjugate of the data in
position i for all 1≤i≤length(samples_time)/2)

Position 1 (0 Hz)
.
.
.

Position
length(samples_time)/2

(Nyquist Frequency)
Position

length(samples_time)/2 + 1
.
.
.

Positon
length(samples_time)

This works fine if your code applies fft to samples_time and immediately apply ifft to the result,
but we want to be able to change the frequency domain data before converting back to the time
domain. So, we will need to edit the first half of the fft output while maintaining the complex
conjugates. We will do this by only using the first half of the frequencies during the compression
algorithm, and then recalculating the complex conjugates when decompressing. This is handled for
you in the code provided below, but make sure you understand why we are only using the first half
of the frequencies. You will also need to use this code for section 2.

function [samples_freq_symmetric] = calc_conjugate(samples_freq_data)
 freq_conj = zeros(length(samples_freq_data), 1);
 for i = 1:size(samples_freq_data)
 freq_conj(i) = conj(samples_freq_data(i));
 end
 samples_freq_symmetric = vertcat(samples_freq_data, freq_conj);

Data

Complex Conjugates

ESE 1500 – Lab 06: Perceptual Coding

ESE 150 – Lab 6 Page 5 of 27

The next two pages provide a master overview of the operations we will perform for compression
and decompression. Refer to this diagram as you read through the lab and develop and assemble
the components of your compression algorithm.

ESE 1500 – Lab 06: Perceptual Coding

ESE 150 – Lab 6 Page 6 of 27

ESE 1500 – Lab 06: Perceptual Coding

ESE 150 – Lab 6 Page 7 of 27

ESE 1500 – Lab 06: Perceptual Coding

ESE 150 – Lab 6 Page 8 of 27

Prelab

• Read through lab.
• Make sure you read the background. This knowledge will be very important for the lab.
• Questions:

o Explain why and how zeroing out (setting values to 0) frequencies in a signal will
lead to compression during Huffman encoding?

o Assuming non-zero frequencies take 10b on average to encode, if we zero out 50%
of the frequencies, what will happen to the efficiency of the compression? How about
90%? Your answer should be expressed as a quantitative result.

o Research the following MATLAB functions or syntax items and write a short (1-2
sentences) explanation in your own words (i.e. do not copy the documentation):

§ … (Yes, an ellipsis is an important part of MATLAB syntax)
§ %% vs % (Focus on explaining MATLAB sections)
§ quantizenumeric()
§ real()
§ imag()
§ ceil() and floor()
§ vertcat()
§ zeros()
§ abs() for complex values
§ conj()
§ quantile()

o Write MATLAB code using the quantile() function to identify the 25% of the elements
with the largest absolute value in the following arrays. The result’s order does not matter.
Just filter out the bottom 75%.

§ [20 75 100 0 1 50 3 3 7 90 2 12]
§ [1 23 -2 10]

o Submit your answers to the Lab 6 prelab quiz on Canvas.

ESE 1500 – Lab 06: Perceptual Coding

ESE 150 – Lab 6 Page 9 of 27

Lab Procedure – Lab Section 1 – Using Matlab to Sample .WAV files

• In this section of the lab, we’ll import a .WAV files directly into Matlab! This will give you
“perfect” PCM audio data that you can then perform a psychoacoustic analysis on.

• We will plot the time and frequency representations of the sound in the .WAV file. This section
uses ‘song 1’ as a reference to ensure the plot_time() and plot_dft() functions are
working correctly.

• This section serves as preparation for the remainder of the lab.
• Items highlighted in yellow are required for your report.

1. In Lab 4 you developed plot_time() and plot_dft() functions. For this lab, we provide
you with slightly modified versions to ensure the plots are in the format we expect.

2. Download the 3 .WAV files from Canvas/website and put them in a directory where you are
running Matlab:

a. For example, create a directory called: c:\temp\lab6
i. You can choose any location you want as long as you remember where it is!

b. Download the .WAV files into c:\temp\lab6 or the directory of your choice.
c. Start Matlab.
d. In Matlab’s command window, type:

cd c:\temp\lab6 or cd <directory of your choice>
3. Import the .WAV files directly into matlab:

a. In Matlab’s command window type:
[samples_time, samp_rate]=audioread('song1_300-600Hz.wav');

b. This has imported the PCM quality .WAV file into a matrix called: samples_time
i. This is A in master diagram.

c. It has also determined the sampling rate that the .WAV file was created with.
d. Look carefully at the value of “samp_rate”, is it what you expect for a .WAV file?

ESE 1500 – Lab 06: Perceptual Coding

ESE 150 – Lab 6 Page 10 of 27

4. Plot in the time domain:
a. The function audioread brings the samples into Matlab
b. Use the provided plot_time() function to plot the samples in the time domain.

Ensure you understand how this function works.
function [samples_time] = plot_time (samples_time, samp_rate, ...
start_time, end_time, figure_n)
samples_short = ...
samples_time((start_time*samp_rate+1):(end_time*samp_rate), 1);
samples_total = length(samples_short);
sample_number = (1:samples_total);
time = arrayfun(@(a) a/samp_rate, sample_number);
figure(figure_n);
plot(time, samples_short);
title('Time Domain Samples');
xlabel('Time (Seconds)');
ylabel('Voltage (Volts)');
end

This function will plot your converted samples in the time-domain, starting at
start_time, ending at end_time, and using figure number figure_n. In order to do
this, the function takes a subset of the samples based on the given start and end times,
calculates the corresponding times for the samples and samples vs. time.

5. Then, call the function plot_time() on your imported .WAV file (song1) to plot 2 periods of
the 600 Hz wave.

a. Save this labeled plot for your report
6. In Lab 4 you created a function called “plot_dft”. We provide a variant with the following

parameters and functions as explained below:
function [freq_half, samples_freq, freq_mag] = ...
 plot_dft(samples_time, samp_rate, figure_n)
samples_freq = fft(samples_time);
samples = length(samples_time); % # of samples
samples_freq_new = abs(samples_freq / samples);
samples_freq_new = ...
samples_freq_new(1:round(length(samples_freq)/2.0)) * 2;
freqs = (0:(samples - 1));
freqs = freqs * (samp_rate/(samples - 1));
freq_half = freqs(1:round(length(freqs) / 2, 0));
figure(figure_n);
freq_mag = samples_freq_new;
samples_freq = samples_freq(1:round(length(samples_freq)/2.0)) * 2;
stem(freq_half, freq_mag);
title('Frequency Domain');
xlabel('Frequency (Hertz)');
ylabel('Amplitude (Volts)');
end

ESE 1500 – Lab 06: Perceptual Coding

ESE 150 – Lab 6 Page 11 of 27

a. Input: samples_time – the output of audioread
b. Input: samp_rate – the sampling rate: e.g.: 44100
c. Input: figure_n – figure number to create the plot on
d. Output: samples_freq – the unmodified output of the fft() function
e. The function itself plots only the valid frequencies: up to ½ sample rate
f. Important note: Here we use the stem() function instead of plot(). The stem()

function plots the discrete sequence of the input as stems that extend from the x-axis.
This is better for visualizing discrete frequencies returned by fft().

7. Plot the entire song in the frequency domain:
a. Use the plot_dft() function.
b. For the input of the plot_dft() function, you should input the raw sound file (from

audioread()).
c. Save this plot for your report, you may want to save multiple zoom levels so you can see

that the spikes are at the correct locations.
d. Do you see the two spikes you expect?
e. Notice that our function also returns the corresponding magnitudes to sample_freq.

8. Listen to the audio just to make sure…
a. Plug your headphones into your computer.
b. Use Matlab to perform a D2A on the data you sampled from the .WAV file! Type the

following in the MATLAB command line:
player = audioplayer(samples_time, samp_rate)

i. You might have to download an additional Add-In. Choose Aerospace Toolbox if
prompted.

To begin playing audio
play(player)

To stop audio
stop(player)

Put your headphone on and listen! Does it sound right??

c. Verify that this step is working before proceeding.
9. Turn both of these graphs in with your report!

ESE 1500 – Lab 06: Perceptual Coding

ESE 150 – Lab 6 Page 12 of 27

Lab Section 2 – Performing a psychoacoustic analysis
• In this section you’ll actually examine the data in the frequency domain and look for samples to

drop.
• For this section, the removal of frequencies from certain sections of the song will be done

manually. This will serve as a basis for writing the actual algorithm in the next section.
• This section corresponds to doing steps C and D from the diagram manually.

1. In Section 1, you imported “song1”.
2. Create a new file named mainsection2.m Write all of you MATLAB script code in this file, the

majority of your code should be in this file so you can put it into your report.
3. Use the code from Section 1 to import “song2” into Matlab (writing this code in mainsection2.m

rather than in the command line). Use the plot_dft() function to plot the frequencies in song2.
This will serve as a visual to show what frequencies are present in the signal and the
corresponding magnitudes. Listen to the audio before continuing to ensure it sounds correct.

1. You’ll also need to save this plot for your lab submission.
4. In this step, you will be performing psychoacoustic analysis on a smaller section of song 2.

1. Write MATLAB code to isolate a consecutive sequence of 500,000 samples starting from
the 100,000th sample of song 2. What is the duration for the 500,000 samples in
seconds?

i. Call this extracted sequence samples_time_extract (this is A)
ii. In previous years some people had problems with running out of memory when

running code for this lab. If this happens to you:
1. Ensure you are only using a piece of the song rather than the whole thing

(as per instructions).
2. If it is still taking too long to run, shorten the length of the extract taken

while writing code and debugging (e.g., use a smaller set of samples like
100,000)

2. Use your plot_dft() function to obtain a frequency plot for the 500,000 samples.
i. Save this plot for your lab submission.
ii. Make sure to save the values returned by plot_dft() as samples_freq and
freq_mag and freq_half. An important thing to note is that the value of
freq_half at an index is the frequency at that index. Additionally, the value of
freq_mag at that same index is the magnitude of that frequency. Finally,
samples_freq refers to the complex value of the frequency, which is what we
want to modify.

3. Do you see any masking opportunities?
i. Zoom in on the 2nd critical band. Refer to the critical band frequency bin chart in

the introduction section to determine the lower and upper frequencies for the 2nd
critical band.

ii. Are there any frequencies that can be dropped from the 2nd critical band? If so,
where and why?

1. This is a preliminary version of C/D.
4. Remember, you are looking at the complex magnitude of the frequency domain BUT,

recall that the function: plot_dft() actually returns the complete frequency domain data.

ESE 1500 – Lab 06: Perceptual Coding

ESE 150 – Lab 6 Page 13 of 27

5. We’re going to code how to zero-out the tones that are masked. For tones that are being
masked, zero-out those samples in the matrix (samples_freq) that was returned by
the plot_dft() function (meaning, set them to zero). Use the magnitudes (freq_mag)
to determine a threshold for dropping frequencies. Try to drop 50% of the samples first.
Make it easy to change the percentage of frequencies dropped in the code, you will want
to experiment with different values here.

i. First, we need to identify the indices of the start frequency and ending
frequency of the second critical band in the samples_freq array. How can you do
this without looking at the entire samples_freq array yourself? You want to store
these values.
ii. Now that you have the indices for the second critical band, you need to
determine the threshold magnitude to determine which frequencies to drop. You
should be using the absolute value of the complex magnitude to determine the
value.

1. Use the quantile() function to determine the threshold to
drop and save the result as a variable.
2. Remember you have freq_mag available.

iii. Iterate over the input array of freq_mag and when the value is less than or
equal to the threshold value, drop that frequency in freq_samples.

1. Remember that the indices of freq_mag line up with the
indices of freq_samples.
2. This is a preliminary version of D.

iv. Try setting your drop percentage to 50%; compare your results and see if you
are getting what you expect.
v. Try setting your drop percentage to 0 and see if all frequencies in the second
critical band stay the same.

1. Use isequals() to confirm your findings.
2. If they are not equal, make sure you are comparing the correct
range. You can create a for loop to tell you at what index it is finding
a discrepancy.

vi. Try setting your drop percentage to 1. Ensure that all frequencies within the
second critical band are set to 0.

6. You’ve done this for just the 2nd frequency bin. Now you are going to create several
functions to generalize your code to work on all critical bands.

i. Create an array with the thresholds of all bands in mainsection2.m.
ii. Apply your generalized code to drop frequencies for all bands. Here are some
tips to help you get it right on the first try:

1. Start with this top-level function declaration.
function [new_samples_freq] = drop_freqs(freq_half,
freq_mag, band_cutoffs, drop_portion,
samples_freq)that composes your helper functions together. The
function should work on an input of any size, provided that
freq_half and freq_mag are the same length.

ESE 1500 – Lab 06: Perceptual Coding

ESE 150 – Lab 6 Page 14 of 27

2. The goal within this function is to take in freq_half, freq_mag,
band_cutoffs, drop_portion, and samples_freq and output
new_samples_freq which is the modified version of
samples_freq. We determine the frequencies that are under the
drop_portion and drop them (set to 0). Previously we did it only for
the second critical band. However now, we are doing it across all of
the critical bands.

a. We’ll come back to this function.
b. Within this function, you should call bands2indicies() to

formulate the slices of windows to pass to another helper
function.

3. We need to find where the indices of the start of each critical band. It
is suggested to create a helper function with the signature

function [indices] =
bands2indices(freq_domain, cutoff_freqs)
that returns an array the same size as cutoff_freqs which
indicates the indices of freq_domain that delimit each
frequency band. cutoff_freqs should be the thresholds of
the critical bands.

a. It outputs an array called indices which is an array that has the
indices of the start of each band from freq_domain.

b. We know that each index’s value in freq_half is evenly
spaced apart. Each value represents a frequency. Is there a
way we can find a constant factor to multiply the
cutoff_freqs array by to find the corresponding index in
freq_domain?

c. Remember that we need integers to index an array, so we
need to round our final indices array.

4. Create a helper function that drops the frequencies on one band at a
time using the quantile() function with the header: function
[samples_freq_modified] =
drop_freq_band(in_freq_mag, percent_dropped,
samples_freq)

a. in_freq_mag is the slice of freq_mag that represents a
particular critical band. percent_dropped is the percentage
of what you want to drop, known as drop_portion in the
function drop_freqs. samples_freq is the slice of the FFT
result (freq_half) from the drop_dft function.

b. You should be using the absolute value of the complex
magnitude (from freq_mag) to determine the value. Use the
quantile() function to determine the threshold to drop and save
the result as a variable.

ESE 1500 – Lab 06: Perceptual Coding

ESE 150 – Lab 6 Page 15 of 27

c. Iterate over the input array of in_freq_mag and when the
value is less than or equal to the threshold value, drop that
frequency in samples_freq. Finally return
samples_freq_modified.

5. Going back to drop_freqs we’re going to implement the rest of this
function.

a. Use bands2indices() to formulate the slices of
in_freq_mag and samples_freq to pass to
drop_freq_band().

b. Since the first critical band starts at 20Hz, there are still
samples between 0Hz and 20Hz that exist. However, for
simplicity, from index 0 to the first value of indicies – 1 set
those values to 0. Do this after calculating bands2indices.

c. Concatenate the results of drop_freq_band() and you will
have the original samples_freq but with the masked
frequencies removed.

d. Ensure that a frequency on the edge of two frequency bands
only gets considered once. If your code considers it in both
bands, the length of your output will not match the input. Off-
by-one indexing is a common mistake.
Now use the debugger to determine what the indices for the
start and end of the first critical band are. Compare the output
of drop_freqs and the original samples_freq input using
isequal().

7. Now we are going to ensure that your function is working appropriately. Try setting the
drop_portion to 0. This should keep the output array the same as the output array
(except the first 20 Hz).

i. Use the debugger to determine what the indices for the start and end of the
first critical band are. Compare the output of drop_freqs and the original
samples_freq input using isequal().

8. Now try setting drop_portion to 1. This should zero out the entire output array. Verify
this by looking at the array’s values.

9. Let’s see if deletion affected the quality of the sound.
5. Convert your modified frequency-domain data back to the time domain:

1. As you’ll recall, there is an “inverse” DFT function in mathematics and in Matlab as well.
2. Remember you must use the method discussed in the background/prelab to handle the

complex conjugates required by ifft. Use the calc_conjugate() function provided in
the Background section to recompute the complex conjugates after dropping
frequencies from the first half of the frequency samples.

3. Assuming you’ve made a matrix called: samples_freq_extracted_dropped that
contains the frequency domain data, but with the samples that were masked set to zero,
convert it back to the time-domain by typing:

ESE 1500 – Lab 06: Perceptual Coding

ESE 150 – Lab 6 Page 16 of 27

samples_time_dropped = …
ifft(calc_conjugate(samples_freq_extracted_dropped),
‘symmetric’)

4. What you’ll get back in samples_time_dropped will be your audio file but back in the
time domain. Matlab has performed the inverse DFT for you.

5. Play back the two sets of samples (i.e. before and after dropping;
samples_time_extracted, samples_time_dropped), can you hear a difference?
Did the dropping of the masked signals change anything?

6. Try this with dropping 0%, 25%, 50%, 75%, and 100%.
7. Show your TA your plot showing the tones dropped and your before and after frequency

samples and answer some questions.
i. This is your Exit Checkoff for February 27th lab, but you should continue on to

Section 3 as time permits.

ESE 1500 – Lab 06: Perceptual Coding

ESE 150 – Lab 6 Page 17 of 27

Lab Section 3 - Automating psychoacoustic analysis

• In the previous section, you only dropped frequencies for a small portion of the sound wave.
The goal of this section is to drop frequencies from all bands for the entirety of the song.

• This will build off of your Lab 5 prelab.
• This section corresponds to steps A through F on the diagram.
• Make sure to read through the entire rest of the lab before beginning this section.

1. Build on your code from Section 2 to remove masked frequencies.
a. You will need to create a separate Matlab function that contains the logic in the

plot_dft() function and analyzes the transformed signal for masking, frequency bin by
frequency bin.

b. We’re giving you the outline of this function called “drop_samples” (this will perform A
through F) and give it the following ins/outs:

function [windowed_freqs] = drop_samples(samples_time,
drop_fraction, window_size, sample_rate, cutoffs)

windowed_freqs = [];
full_windows = floor(length(samples_time)/window_size);
for i=0:(full_windows-1)

% Your Code Goes Here

end
end

c. Create a new file called mainsection3.m to test your function.
d. Here’s an overview of the logic:

i. The input variable samples_time is taken directly from the audioread
function of a song.
ii. drop_fraction is the value that we used earlier in section 2 to determine
which fraction of the frequencies should be dropped.
iii. window_size controls how many samples are allocated to each
window.

1. Instead of taking only a small portion of the song and using it like in
Section 2, we are going to take a larger portion of the song and divide it
into different parts. window_size should be a power of 2.
2. Ensure that the samples_time length is a multiple of window_size.
3. When you are looking through the windows, ensure you do not double
count any samples.

iv. sample_rate is the sample rate given by the audioread function.
v. Finally, cutoffs is the array of critical band cutoffs.
vi. This function does everything that section 2 does, except it does it
over a longer sample and with different window sizes to mask different
frequencies in each window.

e. Now let’s write our function:

ESE 1500 – Lab 06: Perceptual Coding

ESE 150 – Lab 6 Page 18 of 27

i. You should need less than 10 lines in the “% Your Code Goes Here” section.
ii. You need to extract a section of samples_time of window size. We need
this to create a new window every time we go through the for loop.
iii. Then you need to input the window of samples_time to plot_dft
and save its outputs.
iv. Then using drop_freqs from Section 2, calculate the new modified
samples_time with the dropped frequencies.
v. Finally, concatenate it to windowed_freqs to return it in the function.
vi. Feel free to modify the provided code we have given you.

vii. The output windowed_freqs (at the end of step F) should contain the
frequencies after dropping. Keep in mind that you need to drop the aliased
frequencies. Our plot_dft is dropping the second half of samples_freq already
which is the fft of samples_time so we do not need to worry about this.

2. For each transformed section of the song, go through all 24 bandwidths to delete masked
frequencies based on the drop_fraction and the magnitudes. This is D. Start with your code
from Section 2 of this lab and refine as necessary. For simplicity, critical band 24 should include
all frequencies from the lower end of critical band 24 to the Nyquist frequency.

a. Thresholds used for dropping are likely different for each band.
b. MATLAB function quantile() may be useful to get the threshold values.

i. Have your function also print out the original number of frequencies produced
by all uses of fft (not including aliased data) and the total number of
frequencies dropped.
ii. Repeat these steps for each window in the samples_time and concatenate
these separate window results together to produce the expected
windowed_freqs result.

3. This will take your time. You’ll have to think through the code on your own, and you want to
spend some time experimenting with code, the window size, the thresholds, and perhaps other
parameters you identify.

a. Using MATLAB’s debugging tools and breakpoints will be very helpful for this
section. A tutorial for breakpoints was provided in Lab 3.
b. You should also try dropping different fractions of frequencies and see if the number
of frequencies dropped is what you expect.

4. Use the following filtered_frequencies_to_time code to convert the results of Step
1 to time domain and listen to the results. In the next sections we will add Huffman
compression and decompression in between, but it is useful to validate that you can convert this
data back and to see how it sounds before adding in the Huffman compression and
decompression.

function [samples_time] = filtered_frequencies_to_time(windowed_freq,
window_size)
windows = floor(length(windowed_freq)/(window_size/2));
freq_win_size = window_size/2;
samples_time = [];
for i=0:(windows-1)
 window = windowed_freq((i*freq_win_size + 1):((i+1)*freq_win_size));

ESE 1500 – Lab 06: Perceptual Coding

ESE 150 – Lab 6 Page 19 of 27

 window_time = ifft(calc_conjugate(window), 'symmetric');
 samples_time = [samples_time; window_time];
end
end

5. For this decoding function to work, your encoding function needs to produce data
compatible with it.

ESE 1500 – Lab 06: Perceptual Coding

ESE 150 – Lab 6 Page 20 of 27

Lab Section 4 – Using Huffman Encoding

• In this section of the lab, we provide code similar to your Huffman function from your previous
labs to compare the compression ratios before and after dropping samples. This code also
includes quantization of the data.

• This section corresponds to steps G through I on the diagram.

1. We provide function called compress_freqs and give it the following ins/outs:

function [compressed_real, compressed_imag, dict_real, …
avglen_real, symbols_real, dict_imag, avglen_imag, … symbols_imag] =
compress_freqs(windowed_freqs,word_bits,frac_bits)
% First quantize freqs after masked freqs have been droppped
r = real(windowed_freqs);
i = imag(windowed_freqs);
rq = quantizenumeric(r, 1, word_bits, frac_bits, 'nearest');
iq = quantizenumeric(i, 1, word_bits, frac_bits, 'nearest');

% Now compress
[compressed_real, dict_real, avglen_real] = compress_huff(rq);
[compressed_imag, dict_imag, avglen_imag] = compress_huff(iq);
symbols_real = dict_real(:, 2);
symbols_imag = dict_imag(:, 2);
end

function [samples_compressed, dict, avglen] =
compress_huff(my_samples)
% Helper function for compress_freqs
a = tabulate(my_samples);
prob = a(:,3);
prob = prob/100;
symbols = a(:,1);
[dict, avglen] = huffmandict(symbols, prob);
samples_compressed = huffmanenco(my_samples, dict);

end
Put the above functions in the same file and save it as compress_freqs.m

2. The logic for this function is as follows:
a. Split windowed_freqs into the real and imaginary components. This is G.
b. Quantize the real and imaginary components separately. This is H.

i. Quantization is based on the word_bits and frac_bits arguments.
c. Use the logic from the Huffman function from Lab 3 to compress the real and

imaginary components separately. This is I.

ESE 1500 – Lab 06: Perceptual Coding

ESE 150 – Lab 6 Page 21 of 27

d. Returns all of the outputs above, they are all outputs from the process Huffman
compression and will be used later to either decompress the data or compute
compression ratios.

e. Make sure to investigate the huffmandict function and its return values.
3. Test this function on small excerpts of the song (128 or 256 samples) because unmodified

long excerpts will take a very long time to run. Make sure to run drop_samples() on the
excerpt before running compress_freqs(). Later parts of this lab will explain how to
modify long excerpts so Huffman compression runs faster.

a. Use word_bits=16 and frac_bits=12 when quantizing the data with
compress_freqs().
b. You might have to download Fixed Point Designer as an add on, which it should
prompt you to do if needed.

ESE 1500 – Lab 06: Perceptual Coding

ESE 150 – Lab 6 Page 22 of 27

Lab Section 5 – Decompressing
• In this section we provide code to perform the inverse of the Sections 3 and 4 code to retrieve

time domain data that we can listen to.
• This section corresponds to J and K in the diagram.

1. We are providing you with a function called decompress_to_time that will take the
output of the Huffman function as input:

function [samples_time] = decompress_to_time(compressed_real, ...
 compressed_imag, dict_real, dict_imag, window_size)

%Decompress the real component
uncompressed_real = huffmandeco(compressed_real, dict_real);

%Decompress the imaginary component
uncompressed_imag = huffmandeco(compressed_imag, dict_imag);

%Combine the real and imaginary components
windowed_freqs = uncompressed_real + sqrt(-1)*uncompressed_imag;

%Allocate an empty vector for vertcat
samples_time = zeros(0, 1);

%Frequency window size is half the window_size
freq_window_size = window_size/2;

%Calculate the number of windows based on the freq_window_size
windows = length(windowed_freqs)/freq_window_size;

%Iterate through all windows
for w = 1:windows
 %Extract one window of frequencies
 freq_extract = windowed_freqs(((w-1)*freq_window_size)+1: ...
 w*freq_window_size, :);

 %Calculate complex conjugates
 ifft_data = calc_conjugate(freq_extract);

 %IFFT
 time_samples_window = ifft(ifft_data, 'symmetric');

 %Adds time_samples_window for this window to the running list of
 %time samples
 samples_time = vertcat(samples_time, time_samples_window);
end

2. The logic for this function is as follows:

a. Decompress the real and imaginary components using the corresponding dictionary.
b. Combine the real and imaginary components into one complex array.

ESE 1500 – Lab 06: Perceptual Coding

ESE 150 – Lab 6 Page 23 of 27

c. Next it iterates through each window of frequencies; remember that we are only
storing half of the number of frequencies as the length of the window.

d. Take the extract of the frequencies corresponding to the current window.
e. Compute the complex conjugate data needed for ifft.
f. ifft the data and add the time domain data to the running array of time samples.
g. This assumes the window size is a multiple of 2 and the length of the uncompressed

data is equally divisible by the half of the window size.
3. For this decoding function to work, your encoding function needs to produce data

compatible with it.
a. If the output of your compress_freqs() function does not produce listenable audio,

first try running the first few lines of the function to decompress your data and make
sure it matches the data you had prior to Huffman compression (Matlab allows you to
check if two matrices are equal with ==).

b. Also make sure that the length of your data after decompression is an integer
multiple of your window_size.

c. If both a and b are satisfied, and the output still does not sound correct, then the
issue is likely with your code from Section 3 rather than how your data interfaces with
this decompression function.

ESE 1500 – Lab 06: Perceptual Coding

ESE 150 – Lab 6 Page 24 of 27

Lab Section 6 – Putting It All Together

• In this section we will use the functions we have written so far in the lab to compress a song,
calculate compression ratios, and decompress the song to listen for quality loss.

1. Create a new file called mainsection6.m to contain your code and tests for the remainder
of the lab.
2. Create a section to contain your compression code:

a. Read in the audio from song3.
b. Choose a window_size that is a power of 2.
c. Take a long excerpt of the samples_time that is a whole number multiple of the

window_size (Start with around 1 minute of the song and shorten this if your
computer takes more than 5-10 minutes to process it). This is A.

d. Plot this excerpt in the time domain.
e. Plot the frequencies for this excerpt (You do not need to save the output from

plot_dft).
f. Drop frequencies from the excerpt using your drop_() function and the

window_size you chose earlier. This is A—F.
g. Now call compress_freqs() form Section 4 on the result of drop_samples().

This is G-I.
3. Create a new section to decompress the song:

a. Decompress using decompress_to_time(). This is J.
b. Plot this decompressed data in the time domain. This is K.

4. Set your window_size to 2048 and do not drop any frequencies from your song. Figure
out what combination of word_bits and frac_bits will best balance sound quality and
processing time. It should not take more than 5-10 minutes to compress and decompress
the song. Make sure to look back at the documentation for quantizenumeric() to
understand the meaning of word_bits and frac_bits.

a. Read this to better understand the word and frac bits in quantizenumeric():
https://www.mathworks.com/help/dsp/ug/concepts-and-terminology.html

5. Create a new section to compute the compression ratio (# bits to store the original data
divided by the # of bits to store the compressed data) of your algorithm

a. For the original data size, you should assume the data is quantized to 16 bits. First
calculate the total size given 16b per value. For instance, how many bytes for 1
second of audio? How many bytes for the entire input?

b. As for the compressed data size, first include the bytes required for the Huffman-
encoded data. However, also make sure to include the data required to store the
dictionaries, which are still needed for decoding. Instead of directly measuring the
size of each dictionary, try to think about the data requirements for storing the
dictionaries. (How many entries in the dictionary? For each entry, how many bits are
needed for the key (input symbol) and value (symbol’s encoding)?)

c. Calculate the compression ratio.
6. With a fixed window_size of 2048, fill out the following table

ESE 1500 – Lab 06: Perceptual Coding

ESE 150 – Lab 6 Page 25 of 27

Percent Frequencies
Dropped

Frequencies
Dropped

Compression Ratio Quality?
(subjective)

0% 5

10%
25%
50%
75%

For quality – rate 1—5, where 1 is unrecognizable and 5 is essentially indistinguishable from 0%
dropped.

7. With a fixed 10% frequencies dropped, fill out the following table:
window_size # Frequencies Dropped Compression Ratio

1024
2048
4096

8. Include any plots that were produced by your code to generate the above tables with proper

labels (You only have to include two plots for the unmodified excerpt, one for the frequency
domain and one for the time domain).

ESE 1500 – Lab 06: Perceptual Coding

ESE 150 – Lab 6 Page 26 of 27

Post Lab Questions:

1. Why is it inaccurate to remove frequencies directly from the Fourier of a sample window? For
example, why is it wrong to take the Fourier transform of the 2048 sample window and remove
the 512 frequencies with the lowest magnitudes? (512 was arbitrarily chosen).

2. Provide 2 qualitative examples to why the method mentioned in the previous question is
incorrect. In other words, what situations in a song could easily highlight the inaccuracy of the
previous method?

3. How did changing the window size affect the resulting quality of the song after decompressing?
Changing the percent of frequencies dropped?

4. Compare the time and frequency plots of your original sound wave and modified sound wave
when the window_size is 2048 and 25% of frequencies are dropped.

5. Lab report should include error analysis as noted in the “Formal Lab Report” specification.
Error analysis is something you should think about in any experiment and data analysis. It’s
worth thinking about it, even if the conclusion is there is none. When you think about it, you
usually realize there are sources of errors. Often there are good reasons to dismiss errors, but
being thoughtful and deliberate about what errors might be present and the potential magnitude
of those errors is good in not fooling yourself and is important in communicating clearly to others
the potential (non-)impact of various error sources.

Pointing out your source of data and assumptions you are making about that is valuable (you
didn't add any errors, but you do know about the process that likely produced that original .wav
data you started with and errors that may exist there.) You performed computations and
manipulated data. Could any of that introduced any error? What can you say about it? You
made judgements in tuning your algorithm.

ESE 1500 – Lab 06: Perceptual Coding

ESE 150 – Lab 6 Page 27 of 27

HOW TO TURN IN THE LAB

• There will be no weekly lab writeup for either lab session.
• Include answers to prelab questions.
• Include all items highlighted in yellow.
• Include all code you wrote. The code should be in appendices rather than the main part of

the report.
• Include answers to post lab questions.
• Be sure to include all necessary plots.
• Each student will produce an individual formal lab report that is due Monday, March 20th.
• Include the academic integrity statement indicating individual for lab report.

o I, <your name> certify that I have complied with the University of Pennsylvania's
Code of Academic Integrity in completing this report.

o You can review the Code of Academic Integrity here:
http://www.upenn.edu/academicintegrity/ai_codeofacademicintegrity.html

• Include a section in the lab report acknowledging contribution of your partner(s).
• See course web page for Formal Lab Report specification and expectations.
• See the specific rubric on canvas for the formal writeup for this lab.
• Upload a PDF document to canvas containing the formal lab report.

