1 How represent and process continuous information on a digital computer with finite memory? Note: continuous means signal may take on infinite number of values between any T₁ and T₂ STRATEGY References 2 - Sample at periodic time intervals - + Discretize independent variable - » Quantize to discrete levels - Discretize the value of the dependent variable 3 ADC — BROKEN INTO TWO PARTS analog digital output S/H Sample/Hold Performs sampling Performs quantization Voltage 10 3 11 2 3 4 5 6 7 8 001-2 000-3 PROBLEM DECOMPOSITION - Powerful Engineering technique - + Formulate a parameterized solution strategy - Then identify the right parameters - × Divides the problem - × Here 6 - Strategy of sampling and quantization - + Then identify the right sampling rate, quantization level - Convergent: limit of infinite samples, levels - Once have strategy, reduces to a well-defined optimization problem - × Parameterization admits to tuning for tradeoffs 5 MATHEMATICAL EXPRESSION ROUND * Rounding – select nearest discrete value as approximation of continuous value * For sake of concreteness, we will define: + Round(x) – nearest integer to real number x * Round(-0.1) = 0 * Round(-0.1) = 0 * Round(2.4999) = 2 * Round(1.50001) = 2 * What is Round(3.3) ? 7 QUANTIZE - * We will quantize to some level L - Define as number of values between integers - x So, we have L steps of 1/L between integers - + (or only represent every L'th integer if L<1) - × In terms of Round - + Quantize_L(x) = Round(L*x)/L - + E.g. Quantize₈(0.7)=Round(8*0.7)/8=6/8=0.75 PRECLASS 1 L=4 QuantizeL(x) QuantizationErron_(x) L=16 QuantizeL(x) QuantizationErron_(x) QuantizeL(x) = Round(L*x)/L 9 10 8 **BITS** - * If we quantize to L levels per integer - * Represent values between integers - + Max - + Min - * How many bits required per quantized value? BITS PER QUANTIZER VALUE * Bits = [log₂((Max-Min)*L+1)] When sample at time interval T (for frequency = 1/T) We collect the points at times: 0, T, 2T, 3T, 4T, ... For signal f(t), we are collecting: f(0), f(T), f(2T), f(3T), f(4T), ... If we then Quantize the values to level L Quantize_L(f(0)), Quantize_L(f(T)), Quantize_L(f(2T)), ... 13 # SAMPLE AND QUANTIZE VALUES If we then Quantize the values to level L + Quantize_L(f(0)), Quantize_L(f(T)), Quantize_L(f(2T)), ... Or in general, we are collecting the points + Quantize_L(f(i*T)) for i=0 to MaxSamples (or MaxTime/T) We store them in an array (or vector) F of MaxSamples+1 + For i from 0 to MaxSamples: F[i]= Quantize_L(f(i*T)) This is what you will collect in lab today! ADC / DAC - THE FULL PICTURE **Formally: Analog input signal that varies with time: s(t) **Signal processing algorithm to digitize analog input signal: **F[i]=Round(s(i*T)*L)/L **T is sample period **Digitized signal produced by F[]: s_f(t) 15 ADC / DAC — THE FULL PICTURE **Formally: ** Analog input signal that varies with time: s(t) ** Signal processing algorithm to digitize analog input signal: ** F[i]=Round(s(i*T)*L)/L ** T is sample period ** Digitized signal produced by F[]: s_f(t) 18 14 16 SAME PHENOMENA IN IMAGES World continuous Digital images on Zoom, TV, paper (even photographs) are discretized - limited resolution abcde300 dpi abcdeabcde APPLE RETINA DISPLAY Why called retina? Claim (goal): as much resolution as you have in your retina (at typical viewing distance) We cannot see pixels, because our eves are themselves discrete! 21 **APPLE RETINA DISPLAY** * Why called retina? 20 22 - x Claim (goal): as much resolution as you have in your retina (at typical viewing distance) - * We cannot see pixels, because our eyes have discrete photo receptors (rods, cones) - Human eye resolution 0.5 arc-minute (0.02 degrees) Around 300 DPI (Dots-Per-Inch) at 20 inches Penn Engineering PART 2: EFFECTS OF QUANTIZATION Noise -- "Formal" Definition - Noise difference between our ideal signal and the actual signal - + The one that we actually hear - + The one that shows up when we transmit data - The one we store or reconstruct - × Sometimes will see - R(t) = S(t) + n(t) - Noise n(t) is added to the ideal signal S(t) - R(t) what we receive - Or, equivalently: n(t)=S(t)-R(t) QUANTIZATION ERROR How much error? In our case, we round up if equal to or above ½ a level... ...round down if below 1/2 a level Generally, our input signal has 50/50 chance of being above/below Voltage ↑× Error becomes "uniformly distributed" L=2 110 3 Quantize₁=Round(1*x)/ 101 2.2 QuantizeError₁=x-Round(x) time (ms) 100 010 001 26 28 27 PRECLASS 2 Sample $f(t)=\sin(2\pi*110*t)$ at T=0.3ms, quantize L=10i*T 0 0.3ms Value f(i*T) 0 F[i] 0 Quantizatio 0 n Error PART 2B: EFFECTS OF QUANTIZATION ENGINEERING QUANTIZATION ERROR / DESIGN * Why model quantization error as noise? * There is always noise present - Something other than the signal we intend - Wires, electronics, background - Not gaining much if quantization noise < other noise * Quantization adds noise - Reduce by increasing sampling, increasing resolution - More levels → (L) bits → makes more expensive - Bits = |logx((Max-Min)*L+1)| - Increase L until reach desired noise level - Until other sources dominate quantization noise * SNR = Signal-to-Noise Ratio - How much larger is the signal compare to noise? - Mean (average) value of signal / std. dev. of noise - Usually what we are optimizing in the system (including ADC) 29 30 ### **ENGINEERING** - "An Engineer can do for a dime what anyone else can do for a dollar." - Engineering is about optimization and efficiency - Bits are costly - * Anyone: Sample frequently with high resolution - * Engineer ask: how few bits can I use without sacrificing quality? - Engineering is about tradeoffs - Quality vs. Cost 31 Penn Engineering 32 # QUANTIZATION, SAMPLING, CAPACITY **Quantization and Sampling** PROBLEM DECOMPOSITION × Divides the problem optimization problem × Here Powerful Engineering technique Then identify the right parameters Strategy of sampling and quantization Formulate a parameterized solution strategy Then identify the right sampling rate, quantization level Once have strategy, reduces to a well-defined Parameterization admits to tuning for tradeoffs - Play enormous role in determining storage capacity of digital system - # of quantization levels -> # of bits per sample - Increasing resolution of ADC, reduces quantization noise. - But also increases amount of data we must store for each sample - Bits/sample = [log₂((Max-Min)*L+1)] - Sampling rate = how often we collect # of bits per sample - Typically sampling rate = twice frequency of signal (next week) - Increasing the rate, increases the amount of data to store! 33 34 PART 3: SYSTEM CAPACITY AND LIMITS LIMITS OF SAMPLING ### SAMPLING - Definition of proper sampling - + If you can exactly reconstruct analog signal from samples, - + you have done the sampling properly - Essentially: you have captured the key information from the signal to process can be reversed - Milestone of digital signal processing (DSP): - Nyquist-Shannon Theorem (Wednesday) - × Tells us our sampling rate should be: - * twice the frequency of the signal! ## **BIG IDEAS** - Approximate continuous waveform on digital media by - + Discretize in all dimension - + For audio: in time and amplitude - Sample in time; quantize voltage - Allows us to store audio signal as sequence of bits - Reconstruct by "connecting-the-dots" - + If our dots are frequent enough to represent the signal - Introduce error → noise - Reason about tolerable (or noticeable) noise ### ADMIN 37 - Reading for Wednesday on syllabus - × Office Hours - + Complete poll - x Lab 1 Today in Detkin - + Prelab REFERENCES 38 - S. Smith, "The Scientists and Engineer's Guide to Digital Signal Processing," 1997. - Wikipedia, http://en.wikipedia.org/wiki/Analog-to-digital_converter - Wikipedia: http://en.wikipedia.org/wiki/Pulsecode modulation 39 40