


LECTURE TOPICS

\* Where are we on course map?

\* Preclass

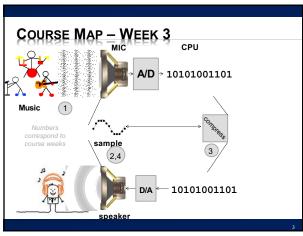
\* Compression: Lossy and Lossless

\* Lossless Compression

- Probability-based lossless compression

- Huffman Encoding

\* Part 2:


- Common case

- Entropy

- Shannon Limits

\* Next Lab

\* References



PRECLASS

3

### **PRECLASS**

1

- Tell me and I forget, teach me and I may remember, involve me and I learn
  - + -- Benjamin Franklin
- \* **73 symbols** (fancy, more general term for letters)
- x 19 unique (ignoring case)
  - (A, B, C, D, E, F, G, H, I, L, M, N, O, R, T, V, Y, space, comma)
  - + How many bits to represent each symbol?
- \* How many bits to encode quote?

**PRECLASS** 

5

2

- Tell me and I forget, teach me and I may remember, involve me and I learn
  - + -- Benjamin Franklin
- × 73 symbols
- x 19 unique (ignoring case)
- If symbols occurrence equally likely, how many occurrences of each symbol should we expect in quote?
- \* How many E's are there in the quote?

6 7

### **PRECLASS**

- Tell me and I forget, teach me and I may remember, involve me and I learn
  - -- Benjamin Franklin
- × 73 symbols
- \* 19 unique (ignoring case)
- × Conclude
  - Symbols do not occur equally
  - Symbol occurrence is not uniformly random

**PRECLASS** 

- \* Tell me and I forget, teach me and I may remember, involve me and I learn
  - + -- Benjamin Franklin
- \* Using uniform encoding (from question 1)
  - + How many bits to encode first 24 symbols?
- \* How many bits using encoding given (Q5a)?

$$TotalBits = \sum_{1}^{24} bits[quote[i]]$$

8

9

### **PRECLASS**

- \* Tell me and I forget, teach me and I may remember, involve me and I learn
  - + -- Benjamin Franklin
- Using uniform encoding (question 1)
  - + How many bits to encode all 73 symbols?
- \* How many bits using encoding given (Q5c)?

$$TotalBits = \sum_{1}^{73} bits[quote[i]]$$

10

CONCLUDE

Can encode with (on average) fewer bits than log<sub>2</sub>(unique-symbols)

11

INTRO TO COMPRESSION

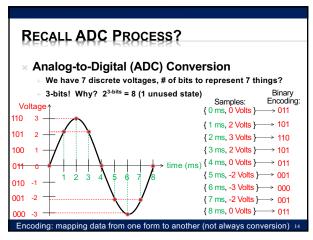
**DATA COMPRESSION** 

What is compression?

Encoding information using fewer bits than the original representation

Why do we need compression?

Most digital data is not sampled/quantized/represented in the most compact form


It takes up more space on a hard drive/memory It takes longer to transmit over a network

Why? Because data is represented so that it is easiest to use

- Two broad categories of compression algorithms:
  - Lossless when data is un-compressed, data is its original form No data is lost or distorted
  - Lossy when data is un-compressed, data is in approximate form

Some of the original data is lost

12



EXAMPLE OF LOSSY COMPRESSION

Sample Rate: 1000 samples/sec, Resolution: 3-bits per sample
Our Sampled Signal; (0, 2.2V, 3V, 2.2V, 0, -2.2V, -3, -2.2V, 0)
Our Quantized Signal; (0, 2V, 3, 2V, 0, -2, -3, -2, 0)
Our 3-bit Digitized Data; {011, 101, 110, 101, 011, 001, 000, 001, 011}
space required to store/transmit: 27 bits

ADC related compression algorithm:
CS&Q (Coarser Sampling AND/OR Quantization)
Either reduce number of bits per sample AND/OR discard a sample completely
Example with our digitized data:
Our 3-bit Digitized Data; {011, 101, 110, 101, 011, 001, 000, 001, 011}
If we drop the sampling rate by a factor of 2, how impact number of bits needed?

Lossy because we cannot restore exact original

15

17

14

**DE-COMPRESSION OF SIGNAL: Decompression & DAC Process** Original compressed signal: {011, , 110, , 011, , 000, , 011} New Sampling Rate Due to Compression: 500 samples/sec Effect of CS&Q compression Voltage<sup>7</sup> Lowered Sampling Rate 110 Added "noise" to signal Listeners might not notice 101 Lossy Compression: One can achieve high time (ms) Compression ratios 010 Frequently used for Audio: MP3 format uses lossy compression algorithm

16

Two forms of classification

Compression Algorithms

Lossy

Lossless

Compression Algorithms

Fixed Group Size

Examples of Fixed Group Size:

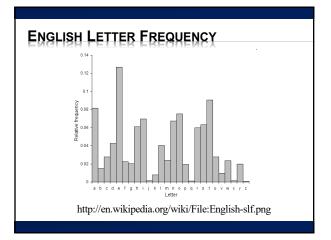
Take in 2 samples: (6-bits) always spit out: (3-bits)

Take in 8-bit ASCII character (group), spit out 7-bit ASCII character (group)

PROBABILITY-BASED LOSSLESS COMPRESSION

18 19

### INFORMATION CONTENT


Does each character contain the same amount of "information"?

### **STATISTICS**

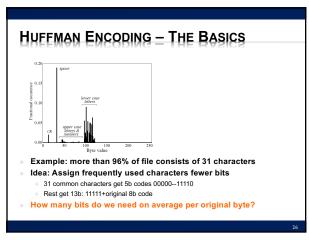
- How often does each character occur?
  - Capital letters versus non-capitals?
  - How many e's in preclass quote?
  - How many z's?
  - How many q's?

20

21



# HUFFMAN ENCODING


- Developed in 1950's (D.A. Huffman)
- Takes advantage of frequency of stream of bits occurrence in data
  - Can be done for ASCII (8-bits per character)
    - Characters do not occur with equal frequency.
    - × How can we exploit statistics (frequency) to pick character encodings?
  - But can also be used for anything with symbols occurring frequently × E.g., Music (drum beats...frequently occurring data)
  - Example of variable length compression algorithm
     Takes in fixed size group spits out variable size replacement

23

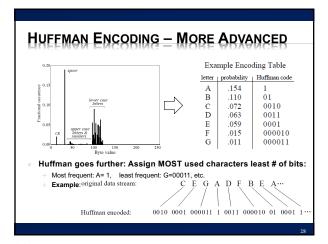
22

| low M  | ANY BIT            | S TO R | EPRESE             | NT ALL LETTERS?                |  |  |  |
|--------|--------------------|--------|--------------------|--------------------------------|--|--|--|
| Letter | Binary<br>Encoding | Letter | Binary<br>Encoding |                                |  |  |  |
| Α      | 00000              | N      | 01101              | Including upper and lower case |  |  |  |
| В      | 00001              | 0      | 01110              | and numbers, how many bits     |  |  |  |
| С      | 00010              | P      | 01111              |                                |  |  |  |
| D      | 00011              | Q      | 10000              |                                |  |  |  |
| E      | 00100              | R      | 10001              |                                |  |  |  |
| F      | 00101              | S      | 10010              |                                |  |  |  |
| G      | 00110              | T      | 10011              |                                |  |  |  |
| Н      | 00111              | U      | 10100              |                                |  |  |  |
| 1      | 01000              | V      | 10101              |                                |  |  |  |
| J      | 01001              | W      | 10110              |                                |  |  |  |
| K      | 01010              | X      | 10111              |                                |  |  |  |
| L      | 01011              | Υ      | 11000              |                                |  |  |  |
| M      | 01100              | Z      | 11001              |                                |  |  |  |

**ASCII ENCODING (7-BIT ENCODING)** 097 098 099 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 119 120 121 ASCII: American Standard Code for Information Interchange 2<sup>7</sup>=128 combinations Standard encoding, developed in the 1960's Didn't take into account international standards! UNICODE 8-bit encoding 28=256 possibilities!



CALCULATION


\* Bits = #5b-characters \* 5 + #13b-character \* 13

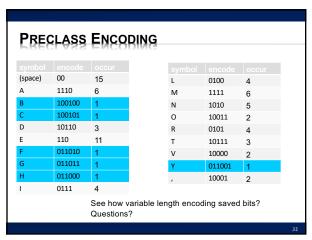
\* Bits=#bytes\*0.96\*5 + #bytes\*0.04\*13

\* Bits/original-byte = 0.96\*5+0.04\*13

\* Bits/original-byte = 5.32

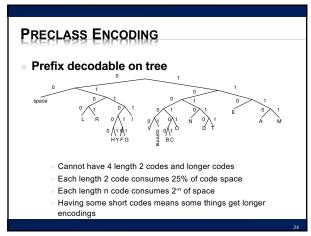
26 27




PRECLASS ENCODING (space) 00 15 0100 L 1110 М 1111 В 100100 N 1010 100101 С 0 10011 D 10110 R 0101 Ε 110 10111 011010 10000 011011 G 011001 011000 10001 0111

28 29

| symbol |        |    | symbol |        |   |
|--------|--------|----|--------|--------|---|
| space) | 00     | 15 | L      | 0100   | 4 |
| A      | 1110   | 6  | M      | 1111   | 6 |
| В      | 100100 |    | N      | 1010   | 5 |
| С      | 100101 |    | 0      | 10011  |   |
| D      | 10110  |    | R      | 0101   | 4 |
| E      | 110    | 11 | Т      | 10111  |   |
| F      | 011010 |    | V      | 10000  |   |
| G      | 011011 |    | Υ      | 011001 |   |
| Н      | 011000 |    | ,      | 10001  |   |
| ı      | 0111   | 4  |        |        |   |


PRECLASS ENCODING (space) 00 15 0100 Α 1110 6 1111 М 100100 В N 1010 5 100101 10011 2 D 10110 3 0101 Ε 110 10111 3 011010 10000 V 2 011011 G 011001 Н 011000 10001 2 0111 4

30 31



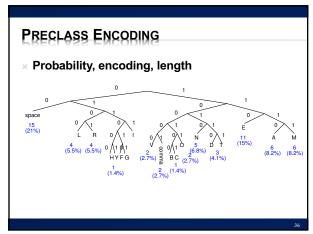
33

32



PREFIX DECODABLE

\*\* Consider small 4 symbol case


- Uniform 2b each

- Can give one symbol 1b code: say 0

- But then must code remaining 3 cases start with 1

- 3 cases left – need at least 2 more bits for some to differentiate

34 35



INTERLURE

36 37

# INTERLUDE \* SNL - 5 minute University + Father Guido Sarducci \* https://www.youtube.com/watch?v=k08x8eoU3L4 \* What form of compression here?

FOR COMPUTER ENGINEERING?

\* Make the common case fast

\* Make the frequent case small

39

38

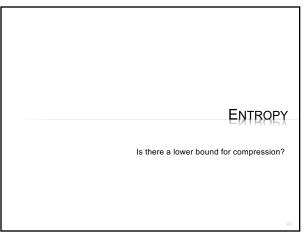
PART 2

Eig idea in optimization engineering

 Make the common case inexpensive

 Shows up throughout computer systems

 Computer architecture
 Caching, instruction selection, branch prediction, ...


 Networking and communication, data storage

 Compression, error-correction/retransmission

 Algorithms and software optimization
 User Interfaces

 Where things live on menus, shortcuts, ...
 How you organize your apps on screens

40 41





42 43

### **CLAUDE SHANNON**



- \* Father of Information Theory, brilliant mathematician
- While at AT&T Bell Labs, landmark paper in 1948
- Determined exactly how low we can go with compression!

44

### **ESTIMATING ENTROPY OF ENGLISH LANGUAGE**

- \* Example: 32 Characters
- x If we assume all characters are equally probable:
  - $p(each character) = \frac{1}{32}$
- Information Entropy per character:

$$H = -\sum p(x)\log_2 p(x)$$

$$H = -32\left(\frac{1}{32}\right)\log\left(\frac{1}{32}\right) = -\log\left(\frac{1}{32}\right) = +5 \text{ bits}$$

Same thing we got when we said we needed log<sub>2</sub>(unique\_things) bits

46

### PRECLASS 5C

Computed total bits as sum of bits

$$TotalBits = \sum_{i=1}^{73} bits[quote[i]]$$

- × Per character
  - + Divide by total characters
  - + Group by same symbols
  - + p<sub>i</sub> = #occurrences/total\_characters

Average Bits = 
$$\sum_{i} p_i \times \text{bits}(i)$$

SHANNON'S ENTROPY

× What is entropy?

Chaos/Disorganization/Randomness/Uncertainty

Shannon's Famous Entropy Formula:

$$H = -\sum p(x)\log_2 p(x)$$
 Shannon's Probability of each outcome Entropy (measured in bits) Negative Sum Of: 
$$\log_2 \text{ of (probability of each outcome)}$$

45

ESTIMATING ENTROPY OF ENGLISH LANGUAGE

- × 27 Characters (26 letters + space)
- \* If we assume all characters are equally probable:
  - $p(each character) = \frac{1}{27}$
- Information Entropy per character:

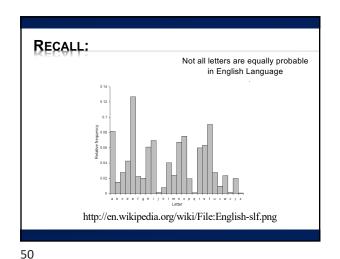
$$H = -\sum p(x)\log_2 p(x)$$

$$H = -27\left(\frac{1}{27}\right)\log\left(\frac{1}{27}\right) = -\log\left(\frac{1}{27}\right) = +4.75 \text{ bits}$$

Same thing we got when we said we needed log<sub>2</sub>(unique\_things) bits

47

SHANNON ENTROPY


Essentially says

Should be able to encode symbol with log(1/p) bits

Average Bits = 
$$\sum_{i} p_i \times \text{bits}(i)$$

$$H = -\sum_{i} p_{i} \times \log_{2}(p_{i})$$

48 49



SHANNON ENTROPY ENGLISH LETTERS  $H = -\sum_{i} p_{i} \times \log_{2}(p_{i})$ 8.17% 3.61 0.30 1.49% 6.07 0.09 2.78% 5.17 0.14 4.25% 4.56 0.19 12.70% 2.98 0.38 2.23% 0.12 0.07% 10.40 0.01 100.00% 4.18

51

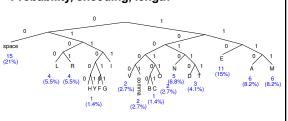
| SHANNON ENTROPY PRECLASS QUOTE $H = -\sum p_i \times \log_2(p_i)$ |   |    |      |      |      |        |  |  |  |  |
|-------------------------------------------------------------------|---|----|------|------|------|--------|--|--|--|--|
| Symbol                                                            |   |    | Р    |      |      | p*bits |  |  |  |  |
| (space)                                                           | 2 | 15 | 0.21 | 2.28 | 0.47 | 0.41   |  |  |  |  |
| А                                                                 | 4 | 6  | 0.08 | 3.60 | 0.30 | 0.33   |  |  |  |  |
| В                                                                 | 6 | 1  | 0.01 | 6.19 | 0.08 | 0.08   |  |  |  |  |
| С                                                                 | 6 | 1  | 0.01 | 6.19 | 0.08 | 0.08   |  |  |  |  |
| D                                                                 | 5 | 3  | 0.04 | 4.60 | 0.19 | 0.21   |  |  |  |  |
| E                                                                 | 3 | 11 | 0.15 | 2.73 | 0.41 | 0.45   |  |  |  |  |
|                                                                   |   |    |      |      |      |        |  |  |  |  |
| ,                                                                 | 5 | 2  | 0.03 | 5.19 | 0.14 | 0.14   |  |  |  |  |
|                                                                   |   |    |      | sum  | 3.74 | 3.77   |  |  |  |  |
|                                                                   |   |    |      |      |      | 52     |  |  |  |  |

**ENCODING TARGET** 

× Right bits target is:

+ Bits(i) =  $-\log_2(p_i)$ 

 $+2^{\text{-Bits(i)}}=p_i$ 


Symbol should take up fraction of encoding space matching probability of occurrence

52

53

## PRECLASS ENCODING

Probability, encoding, length



SUMMING IT UP: SHANNON & COMPRESSION

Shannon's Entropy represents a lower limit for lossless data compression

It tells us the minimum number of bits that can be used to encode a message without loss (according to a particular model)

Shannon's Source Coding Theorem:

A lossless data compression algorithm cannot compress messages to have (on average) more than 1 bit of Shannon's Entropy per bit of encoded message

54

### **LEARN MORE**

- × ESE 3010- Probability
  - + Central to understanding probabilities
    - × What cases are common and how common they are
- **ESE 6740 Information Theory**
- \* Most all computer engineering courses
  - + Deal with common-case optimizations
  - + CIS2400, CIS4710, CIS3800, ESE4070, ....

56

57

### **MONDAY IN LAB**

- Implement Compression!
  - + Implement Huffman Compression
  - Note: longer prelab with MATLAB intro; plan accordingly

    × Budget a few hours
- × Remember
  - Feedback

58

### REFERENCES

**BIG IDEAS** 

× Common Case

× Shannon's Entropy

compressibility of data

× Lossless Compression

Exploit non-uniform statistics of data

Make the common case inexpensive

+ Given short encoding to most common items

Gives us a formal tool to define lower bound for

- S. Smith, "The Scientists and Engineer's Guide to Digital Signal Processing," 1997.
- Shannon's Entropy (excellent video)

http://www.youtube.com/watch?v=JnJq3Py0dyM

Used heavily in the creation of entropy slides