Lecture #16 — Stored-Program Processors

ESE 1500 -
DIGITAL AuDIO BAsIcs

ESE1500 Spring 2023

Based on slides © 2009--2023 DeHon

ESE1500 Sy

COURSE MAP — WEEK 9

MIiC
N\

D
> AD >) >4

Music 1 domain
conversion (= & -
0,
%,
78
s
\sample freq pyscho-

acoustics (3)/

\ (2 4

< D/A<— 10101001101

OK sieaker MP3 Player / iPhone / Droid

3/27/23

ESE1500 Spring 2023

LECTURE TOPICS

Setup

Where are we?

Review

Memory

Wide-Word, Stored-Program Processor
Contemporary Processor: ARM

REMINDER MEMORY

ESE1500 Spring 2023

RANDOM ACCEsS MEMORY

A Memory:
Series of locations (slots)
Can write values a slot (specified by address, WA)
Read values from (by address, RA)

. Din
Return last value written
Write
WA — =]
Notation: RA ——
slash on wire
means multiple bits wide Dout

5

KEY ENGINEERING PROQPERTY

Store state compactly in memory

A(memory cell) small Din
A(mem) < A(gate)

Write?

Depends on few

inputs/outputs
Memory cells share
inputs and outputs

WA ——= =1
RA ———=]

Dout

]
12

QuiIcK REMINDER

13

PRECLASS 1

ESE1500 Spring 2023

“STORED PROGRAM” COMPUTER

Can build physical machines that perform
any computation.

Can be built with limited hardware that is
reused in time.

Historically: this was a key contribution of
Penn’s Moore School

ENIAC-> EDVAC
Computer Engineers:
Eckert and Mauchly
(often credited to
Von Neumann)

17

14

REYVIEW

Instruction Memory
'300000000000000

010001000010100.
ess | 010110000001011

‘writeback enable, address, vl
rom bottom) ——'goes o ol

Can compute a b
large number of e
gates — by m
Single active !
compute element *
(programmable
gate) Funcion

Sequence in time s

Store state in Tieecrso |

memory

100101101000000 ia Memory

al
(Slots)

Use Instruction
memory to select
and sequence

o erations writeback enable address value

o
ih memories.

3/27/23

Output 7

STOREDR-PROGRAM PROCESSOR

16

BAsIC IDEA

Express computation
in terms of a few primitives

E.g. Add, Multiply, OR, AND, NAND
Provide one of each hardware primitive
Store intermediates in memory

Sequence operations on hardware to perform
larger computation

Store description of operation sequence in
memory as well — hence “Stored Program”
By filling in memory, can program to perform
any computation

18

Part 2

EXPAND PROCESSOR

19

PROCESSORS

21

ESE1500 Spring 2023

WORD-WIDE PROCESSORS

Common to compute on multibit words
Add two 16b numbers
Multiply two 16b numbers
Perform bitwise-XOR on two 32b numbers

b3] a[3) bf2] a[2] b[1] a[1] b[0] a[0]
More hardware U U U

U
16 full adders, 32 XOR gates V Q? v V

o3 2 1] clo)
All programmable gates doing the same thing
So don’t require more instruction bits

23

3/27/23

ESE1500 Spring 2023

BUILDING QUT oxEroonmo0
Deliberately simple " | oiommmon "
; o |
Single gate e Lol
Lacks many things 1" [o e
expect from processors gy i i (OGS
--- that need to run C code -
...or Java, Python... Furcton o2
out Input 5
(ogser) Oupas
20

20

ESE1500 Spring 2023

BEYOND SINGLE GATE

Single gate extreme to make the high-level point
Except in some particular cases, not practical

Usually reuse Iarger blocks
Multi-bit Adders
Multipliers
Get more done per cycle than one gate

Now it’s a matter of engineering the design point
Where do we want to be between one gate and full circuit
extreme?

How many gate evaluations should we physically compute
each cycle?

22

ESE1500 Spring 2023

MULTIBIT BUS SYMBOLS

b[3:0] a[3:0]

4

c[3:0] oin

b[3] a[3] b[2] a[2] b[1] a[1] b[0] a[0]

AR

c[3] c[2] c[1] c[0]

Dout

3/27/23

ESE1500 Spring 2023 ESE1500 Spring 2023

ARITHMETIC AND Logic UNIT (ALU) ALU OPs (ON 8BIT WORDS)
A common logic primitive is the ALU ADD 00011000 00010100 =
Can perform any of a number of operations on a Add 0x18 to 0x14 result is:
series of words (strings of bits) Add 24 to 20

Operations: Add, subtract, shift-left, shift-right,
bitswise xor, and, or, invert,
Operates on “words” —fixed number of bits — e.g. 16
Can interpret as number or address
Identify a set of control bits that select the
operation it forms A B
Makes it “programmable” gg?
op2
op3

25 26

ESE1500 Spring 2023

ALU OPs (ON 8BIT WORDS) ALU OPs (ON 8BIT WORDS)
ADD 00011000 00010100 = 00101100 ADD 00011000 00010100 = 00101100
Add 0x18 to Ox14 =0x2C0 Add 0x18 to 0x14 =0x2C0
Add 24 to 20 =44 Add 24 to 20 =44
SUB 00011000 00010100 = 00000100 SUB 00011000 00010100 = 00000100
Subtract 0x14 from 0x18 .. 0x04 Subtract 0x14 from 0x18 .. 0x04
INV 00011000 XXXXXXXX = INV 00011000 XXXXXXXX =11100111
Invert the bits in 0x18 ...gives us: Invert the bits in 0x18 ...0xD7
SRL 00011000 XXXXXXXX = 00001100
Shift right 0x18 ...0x0C

27 28

ESE1500 Spring 2023 ESE1500 Spring 2023

ALU OPs (QN 8BIT WQRDS) ALU ENCODING
ADD 00011000 00010100 = 00101100 Each operation has some bit sequence
oo o
SUB 00011000 00010100 = 00000100 SUB 0010
Subtract 0x14 from 0x18 .. 0x04 INV- 0001
INV 00011000 XXXXXXXX =11100111 SLL 1110 op0
Invert the bits in 0x18 ...0xD7 SRL 1100 op1
SRL 00011000 XXXXXXXX = 00001100 SRA 1101 op2
. op3
Shift right 0x18 ...0x0C AND 1000 P

XOR 00011000 00010100 = 00001100

xor 0x18 to 0x14 = 0x0C

29 30

3/27/23

ESE1500 Spring 2023 ESE1500 Spring 2023

ALU-BASED WORD-WIDE PROCESSOR ALU-BASED WORD-WIDE PROCESSOR

}

o

Instr
Mem

32

BEYOND LINEAR SEQUENCE BRANCHING
So far, processor can run a fixed Allow PC to advance 1
sequence by value other than 1 PC
Cannot Could be negative

Implement a loop
Implement an if-then-else

Instr
Mem

Instr -t
Mery Instr

Mem

ESE1500 Spring 2023 ESE1500 Spring 2023

BRANCHING BRANCHING

Allow PC to advance 1 Allow PC to advance !
by value other than 1 PC by value other than 1 PC

Could be negative Could be negative
Allow data to impact Allow data to impact

selection s selection "
Only load when data bit is 1 BT Only load when data bit is 1 LT

Add Instruction bits
(or instruction) to
control loading

35 36

ESE1500 Spring 2023

3/27/23

ESE1500 Spring 2023

BRANCHING

Allow PC to advance 1
by value other than 1 PC
Could be negative
Allow data to impact
selection
Only load when data bit is 1
Add Instruction bits
(or instruction) to
control loading

Instr
Mem

BRANCH if (SRC1[0]==1) to PC+SRC2

BRANCHING
Given instruction: BR SRC1 SRC2
BRANCH if (SRC1[0]==1) to PC+SRC2

Start ro=o, R1=1, R2=a, R3=b, R4=?, R5=4, R6=-3 |

PC@

100 SUB R4 R4 R4
101 BRR2 R5
102 ADD R4 R1 R4 "
103 SRAR2 none R2 Instr
104 BRRIRG vem 1
105

38

ESE1500 Spring 2023

LOOPING

while (condition) 1
{body} PC
after-loop
|-t
Instr
Mem j

ESE1500 Spring 2023

CONDITIONAL

if (condition) 1
{true-case} PC
{false-case}

after-if-then-else - T

Mem

BRANCHING
Given instruction: BR SRC1 SRC2
BRANCH if (SRC1[0]==1) to PC+SRC2

Start ro=o, R1=1, R2=a, R3=b, Ra=?, R7=3, R8=2, R9=?{

200 SUB R2 R3 R9
201 BRR9OR7
202 MOV R1 R4 | L]
203 BRR1R8 Instr
Mem
204 MOV RO R4 | |
205
40

CONTEMPORARY PROCESSORS

42

IPoD, ITSYBITSY
PROCESSOR

Compare A

ESE1500 Spring 2023

LARGE MEMORY

Add Large Memory for Bulk data storage

Inst
Mem Data In

Adary y
Big Memory

T
45

ESE1500 Spring 2023

ARM LOAD-STORE |

LDR Rd, [Rn]

Mean: Rd=Mem[Rn]
STRRd, [Rn]

Mean: Mem[Rn]=Rd

Data In

Addr nENOUT oENN

Big Memory —

Data Oul

47

3/27/23

ESE1500 Spring 2023

BAsIC ARITHMETIC

Instr

ADD Rd, Rn, Rm [
Means: Rd=Rn+Rm

Similar: OR, XOR, AND, SUB, MUL
MLA — Multiply Accumulate

MLA Rd,Rm,Rs,Rn

Means: Rd&=Rm*Rs+Rn

(options to use pair of registers for Rd,Rn)

44

LOAD-STORE ARCHTECTURE

Add instructions to move data between large
memory and small (Register File)

-N
Vo Data In

Addr

Big Memory

Data Ou:

LD Rd,Rsrc
Means: Rd = Mem[Rsrc]

ST Rsrc1,Rsrc2
Means: Mem[Rsrc2]=Rsrc1

46

ESE1500 Spring 2023

BIG IDEAS

Memory stores data compactly
Can implement large computations on small
hardware by reusing hardware in time
Storing computational state in memory
Can store program control in instruction
memory
Change program by reprogramming memory
Universal machine: Stored-Program Processor

L«
48

3/27/23

ESE1500 Spring 2023

LEARN MORE

CIS2400 - processor organization and

assembly

CIS4710 — implement and optimize processors
Including FPGA mapping in Verilog

ESE3700 — implement memories (and gates)

using transistors

49

ESE1500 Spring 2023

REMINDERS

Feeback
Lab 7 due today
Lab 8 today

Back to using ItsyBitsy

Prelab on Arduino software you installed on your
computer for Lab 1

Bring kit to lab

50

