

LECTURE TOPICS Where are we on course map? **Review Sound** Sensing Actuation Motor Closing the loop (part 2) Servo Control PWM

2

4

Penn Engineering **REVIEW**

SPEAKERS/MICROPHONES x Can sense the world Physical effect (position) Convert to voltage ... to bits Can manipulate the world + Bits → voltage + Voltage causes physical movement

5 6

SENSING * What do we need to sense in the world? * How might we sense?

SWITCH * Can easily give a high or low input Connected short to ground (0) Unconnected, weakly pulled up to high (1) × Read on input pin × Use to sense position Did something make contact to actuate switch? * How use switch sensor for collision detection? Other uses?

POTENTIOMETER × Variable Resistance + Based on position, different amount of resistance across $R = \rho L/A = R_0 * L$ $R \sim = R_0 * 2\pi r * (degrees/360)$

10

9

PRECLASS 1 × Voltage at ADC Input + Rin=10 Ohm? + Rin=10K Ohm? × V=I*R * No current flows into ADC in × I(Rin) = I(Rref) * For Rin < Rref, where is most of voltage? * For Rin > Rref, where is most of voltage?

PRECLASS 1 × V=I*R × I=5V/(Rin+Rref) × Vadc=I*Rref * Vadc = 5(Rref / (Rin+Rref)) x Vadc = 5(1000 / (Rin+1000))Rref=1K Ohm × Voltage at ADC Input + Rin=10 Ohm? + Rin=10K Ohm?

11 12

SENSING * What do we need to control (actuate) in the * How might we exert mechanical control?

ON-OFF SWITCH × Logic produces a 0/1 x Can control flow of much larger current Stop flow - off Enable flow - on × Transistors Voltage on input (gate) controls current flow (resistance) between source and drain

16

15

ON-OFF SWITCH × Logic produces 0/1 * Can control flow of much larger current Stop flow - off Enable flow - on × Transistors Voltage on input (gate) controls current flow (resistance) between source and drain Simplified model Vgate>Vref - R=Rtrans Vgate<Vref -- R=infinite

ON-OFF SWITCH × Easy to produce 0/1 x Can control flow of much larger current Stop flow - off Enable flow - on × Relay Similar model Input voltage controls switch + Mechanical switching + Lower resistance Different (usually larger) voltage range, current

17 18

MOTOR — ABSTRACT VIEW

Providing currents across a motor causes it to spin

Magnitude of current determines how fast

Pictures from:
https://en.wikipedia.org/wiki/Electric_motor#/media/File:Electric_motor_cycle_2.png

19 20

MOTOR CONTROL

**Control our motors with voltages and currents

**Control those with transistors/relays

**Controllable from our computers

Pictures from:
https://en.wikipedia.org/wiki/Electric_motor#/media/File:Electric_motor.gif
https://commons.wikimedia.org/wiki/File:Electric_motor_cycle_2.png

21 22

CONTROL

* Our mechanical (and electrical) components are often noisy

+ E.g., non-linear, motor-specific relationship between current and speed or rotation

* The physical world causes disturbances

+ Obstacles

+ Tires or pulleys slip

+ Wind

* How do we get reliable actuation when faced with variable behavior, noise, disturbances?

23 24

SERVO – HOW WORK

* Motor + sensor + control

* Sense if motor in position

If not, turn on motor in appropriate direction to move closer to position

25 26

SERVO - CONTROL

**Move moves shaft

**Sense position of shaft with potentiometer

**Use to decide if need to move

**Compare with a reference

28

27

MOTIVATE DIGITAL INPUT

** Could provide Analog output from microcontroller with D2A

** ...but, D2A is somewhat expensive

** Communicate position using single digital output

+ Look at output over time period
+ How much of the time period is it high/low?
+ Use to communicate more than 1 bit of data

29 30

SERVO Puts some control smarts in servo package Takes PWM input to specify position Senses shaft rotation and engages motor to move to specified position

32

SERVO SMARTS Could just do all this control from processor Sense position, drive motor Often cheaper to offload that little control from processor + Including saves pins on (wires to) processor

PWM * If divide into 8 slots per PWM period, how many bits can we communicate? + Generalize N slots?

33 34

PWM ENCODING WITH DIGITAL LOGIC * Set PWM_CLK = slots*PWM_freq. * So, if use PWM_freq=490Hz and 8 slots PWM_CLK freq = 3920 Hz * How convert digital value to PWM sequence? * always @ (posedge PWM CLK) + cnt<=cnt+1; + PWM<=(cnt<=digital_value);

PWM DECODING WITH DIGITAL LOGIC * How convert PWM input to digital number? * always @ (posedge PWM_CLK) + pwm_pos<=pwm_pos+1 + If (PWM) cnt<=cnt+1</p> + If (pwm_pos==max) digital_out<=cnt; cnt<=0; pwm_pos<=0;

35 36

BIG IDEAS

** Information world can interact with physical world

+ Sense – read state of physical world into bits for computation

+ Actuate – have bits control physical world

* Turn on/off, move, position

** Connect sensing and actuation to control

+ Computers support computation to realize control and close-the-loop

+ Even with noisy actuators and external disturbances

38

37

/

LEARN MORE @ PENN

* Courses

- ESE3500 – Embedded Systems
- ESE4210 – Control for Autonomous Robots

REMEMBER

× Feedback including lab

39 40