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The discrete Fourier transform, again

I It is time to write and understand the DFT in a more abstract way

I Write signal x and complex exponential ekN as vectors x and ekN

x =


x(0)
x(1)
...
x(N − 1)

 ekN =
1√
N


e j2πk0/N

e j2πk1/N

...
e j2πk(N−1)/N


I Use vectors to write the kth DFT component as (eH

kN = (e∗kN)T )

X (k) = eH
kNx = 〈x, ekN〉 =

1√
N

N−1∑
n=0

x(n)e−j2πkn/N

I kth DFT component X (k) is the product of x with exponential eH
kN
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DFT in matrix notation

I Write DFT X as a stacked vector and stack individual definitions

X =


X (0)
X (1)
...
X (N − 1)

 =


eH

0Nx
eH

1Nx
...
eH

(N−1)Nx

 =


eH

0N

eH
1N

...
eH

(N−1)N

 x

I Define the DFT matrix FH so that we can write X = FHx

FH =


eH

0N

eH
1N

...
eH

(N−1)N

 =
1√
N


1 1 · · · 1

1 e−j2π(1)(1)/N · · · e−j2π(1)(N−1)/N

...
...

. . .
...

1 e−j2π(N−1)(1)/N · · · e−j2π(N−1)(N−1)/N


I The DFT of signal x is a matrix multiplication ⇒ X = FHx
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The DFT as a matrix product

I In case you are having trouble visualizing the matrix product

e−j2π(0)(0)/N · e−j2π(0)(n)/N · e−j2π(0)(N−1)/N

· · · · ·
e−j2π(k)(0)/N · e−j2π(k)(n)/N · e−j2π(k)(N−1)/N

· · · · ·
e−j2π(N−1)(0)/N · e−j2π(N−1)(n)/N · e−j2π(N−1)(N−1)/N





x(0)

·
x(n)

·
x(N − 1)





X (0)

·
X (k)

·
X (N − 1)



FH =

= x

= X = FHx

e−j2π(k)(0)/Nx(0)

e−j2π(k)(n)/Nx(n)

e−j2π(k)(N−1)/Nx(N − 1)

I The kth DFT component X (k) is the kth row of matrix product FHx
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Some properties of the DFT matrix FH

I The (k , n)th element of the matrix FH is the complex exponential

((
FH
))

kn
= e−j2π(k)(n)/N =

(
e−j2π(k)/N

)(n)

I Since elements of rows are indexed powers we say FH is Vandermonde

I Also observe that since e−j2π(k)(n)/N = e−j2π(n)(k)/N we have((
FH
))

kn
= e−j2π(k)(n)/N = e−j2π(n)(k)/N =

((
FH
))

nk

I The DFT matrix F is symmetric ⇒ (FH)T = FH

I Can write FH as ⇒ FH = (FH)T =
[

e∗0N e∗1N · · · e∗(N−1)N

]
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The Hermitian of the DFT matrix FH

I Let F =
(
FH
)H

be conjugate transpose of FH . We can write F as

F =


eT

0N

eT
1N

...
eT

(N−1)N

 ⇐ FH =
[

e∗
0N e∗

1N · · · e∗
(N−1)N

]

I We say that FH and F are Hermitians of each other (that’s why FH)

I The nth row of F is the nth complex exponential eT
nN

I The kth column of FH is the kth conjugate complex exponential e∗kN

Signal and Information Processing Principal Component Analysis 7



The product of F and its Hermitian FH

I The product between the DFT matrix F and its Hermitian FH is

[
e∗

0N · · · e∗
kN · · · e∗

(N−1)N

]


eT
0N

...
eT
kN

...
eT

(N−1)N





eT
0Ne∗

0N · · · eT
0Ne∗

kN · · · eT
0Ne∗

(N−1)N

...
. . .

...
. . .

...
eT
kNe∗

0N · · · eT
kNe∗

kN · · · eT
kNe∗

(N−1)N

...
. . .

...
. . .

...
eT

(N−1)Ne∗
0N · · · eT

(N−1)Ne∗
kN · · · eT

(N−1)Ne∗
(N−1)N


= FFH

I The (n, k) element of product matrix is the inner product eT
nNe∗kN

I Orthonormality of complex exponentials ⇒ eT
nNe∗kN = δ(n − k)

⇒ Only the diagonal elements survive in the matrix product
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The matrix F and its inverse

I The DFT matrix F and its Hermitian are inverses of each other

FFH =



1 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · 1 · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · 1

 = I

I Matrices whose inverse is its Hermitian, are called unitary matrices

I Have proved the following fundamental theorem. Orthonormality

Theorem
The DFT matrix F is unitary ⇒ FFH = I = FHF
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The iDFT in matrix form

I We can retrace methodology to also write the iDFT in matrix form

I No new definitions are needed. Use vectors enN and X to write

x̃(n) = eT
nNX =

1√
N

N−1∑
k=0

X (k)e j2πkn/N

I Define stacked vector x̃ and stack definitions. Use expression for F

x̃ =


x̃(0)
x̃(1)
...
x̃(N − 1)

 =


eT

0NX
eT

1NX
...
eT

(N−1)NX

 =


eT

0N

eT
1N

...
eT

(N−1)N

X = FX

I The iDFT is, as the DFT, just a matrix product ⇒ x̃ = FX
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The iDFT in matrix form

I Again, in case you are having trouble visualizing the matrix product

e j2π(0)(0)/N · e j2π(k)(0)/N · e j2π(N−1)(0)/N

· · · · ·
e j2π(0)(n)/N · e j2π(k)(n)/N · e j2π(N−1)(n)/N

· · · · ·
e j2π(0)(N−1)/N · e j2π(k)(N−1)/N · e j2π(N−1)(N−1)/N





X (0)

·
X (k)

·
X (N − 1)





x̃(0)

·
x̃(n)

·
x̃(N − 1)



F =

= X

= x̃ = FX

e j2π(0)(n)/NX (0)

e j2π(k)(n)/NX (k)

e j2π(N−1)(n)/NX (N − 1)

I Can write the iDFT of X as the matrix product ⇒ x̃ = FX
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Inverse theorem, like a pro

I When we proved theorems we had monkey steps and one smart step

⇒ That was orthonormality ⇒ matrix F is unitary ⇒ FHF = I

Theorem
The iDFT is, indeed, the inverse of the DFT

Proof.

I Write x̃ = FX and X = FHx and exploit fact that F is unitary

x̃ = FX = FFHx = Ix = x

I Actually, this theorem would be true for any transform pair

X = THx ⇐⇒ x̃ = TX

I As long as the transform matrix T is unitary ⇒ THT = I
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Energy conservation (Parseval) theorem, like a pro

Theorem
The DFT preserves energy ⇒ ‖x‖2 = xHx = XHX = ‖X‖2

Proof.

I Use iDFT to write x = FX and exploit fact that F is unitary

‖x‖2 = xHx = (FX)H FX = XHFHFX = XHX = ‖X‖2

I This theorem would also be true for any transform pair

X = THx ⇐⇒ x̃ = TX

I As long as the transform matrix T is unitary ⇒ THT = I
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The discrete cosine transform

I Are there other useful transforms defined by unitary matrices T?

⇒ Many. One we have already found is the DCT

I Define the inverse DCT matrix C to write the iDCT as x̃ = CX

C =
1√
N


1 1 · · · 1

1
√

2 cos
[

2π(1)((1)+1/2)
N

]
· · ·

√
2 cos

[
2π(N−1)((1)+1/2)

N

]
...

...
. . .

...

1
√

2 cos
[

2π(1)((N−1)+1/2)
N

]
· · ·

√
2 cos

[
2π(N−1)((N−1)+1/2)

N

]


I It is ready to verify that C is unitary (the cosines are orthonormal)

I From where the inverse and energy conservation theorems follow

⇒ Proofs hold for all unitary matrices, C in particular
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Designing transformations adapted to signals

I A basic information processing theory can be built for any T

I Then, why do we specifically choose the DFT? Or the DCT?

⇒ Oscillations represent different rates of change

⇒ Different rates of change represent different aspects of a signal

I Not a panacea, though. E.g., FH is independent of the signal

I If we know something about signal, we should use it to build better
T

I A way of “knowing something” is a stochastic model of the signal

I PCA: Principal component analysis

⇒ Use the eigenvectors of the covariance matrix to build T
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Stochastic signals

The discrete Fourier transform with unitary matrices

Stochastic signals

Principal Component Analysis (PCA) transform

Dimensionality reduction

Principal Components

Face recognition
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Random Variables

I A random variable X models a random phenomena

⇒ One in which many different outcomes are possible

⇒ And one in which some outcomes may be more likely than others

I Thus, a random variable represents two things

⇒ All possible outcomes and their respective likelihoods

−σx σx µYµY − σY µY + σY
µZµZ − σZ µZ + σZ

x , y, z

pX (x), pY (y), pZ (y)

I Random variable X takes values around 0 and Y values around µY

I Z takes values around µZ and the values are more concentrated

Signal and Information Processing Principal Component Analysis 17



Probabilities

I Probabilities measure the likelihood of observing different outcomes

⇒ Larger probability means an outcome that is more likely

⇒ Or, observed more often when seeing many realizations

I Random variables represented by uppercase ⇒ E.g., X

I Values that it can take represented by lowercase ⇒ E.g., x

I The probability that X takes values between x and x ′ is written as

P
(
x < X ≤ x ′

)
I Here, we describe probabilities with density functions (pdf)
⇒ pX (x)

P
(
x < X ≤ x ′

)
=

∫ x′

x

pX (u) du

I pX (x) ≈ How likely random variable X is to take a value around x
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Gaussian random variables

I A random variable X is Gaussian (or Normal) if its pdf is of the form

pX (x) =
1√
2πσ

e−(x−µ)2/σ2

I The mean µ determines center. The variance σ2 determines width

−σx σx µYµY − σY µY + σY
µZµZ − σZ µZ + σZ

x , y, z

pX (x), pY (y), pZ (y)

I Means satisfy 0 = µX < µY < µZ . Variances are σ2
X = σ2

Y > σ2
Z
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Expectation

I Expectation of random variable is an average weighted by likelihoods

E [X ] =

∫ ∞
−∞

xpX (x) dx

I Regular average ⇒ Sum all values and divide by number of values

I Expectation ⇒ Weight values x by their relative likelihoods pX (x)

I For a Gaussian random variable X the expectation is the mean µ

E [X ] =

∫ ∞
−∞

x
1√
2πσ

e−(x−µ)2/σ2

dx = µ

I Not difficult to evaluate integral, but besides the point to do so here
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Variance

I Measure of variability around the mean weighted by likelihoods

var [X ] = E
[(
X − E [X ]

)2
]

=

∫ ∞
−∞

(
x − E [X ]

)2
pX (x) dx

I Large variance ≡ likely values are spread out around the mean

I Small variance ≡ likely values are concentrated around the mean

I For a Gaussian random variable X the variance is the variance σ2

var [X ] =

∫ ∞
−∞

(
x − E [X ]

)2 1√
2πσ

e−(x−µ)2/σ2

dx = σ2

I Not difficult to evaluate either. But also besides the point here
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Random signals

I A random signal X is a collection of random variables (length N)

X = [X (0), X (1), . . . , X (N − 1)]T

I Each of the random variables has its own pdf ⇒ pX (n)(x)

I This pdf describes the likelihood of X (n) taking a value around x

I This is not a sufficient description. Joint outcomes also important

I Joint pdf pX(x) says how likely signal X is to be found around x

P
(
x ∈ X

)
=

∫∫
X
pX(x) dx

I The individual pdfs pX (n)(x) are said to be marginal pdfs
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Face images

I Random signal X ⇒ All possible images of human faces

I More manageable ⇒ X is a collection of 400 face images

⇒ The random variable represents all the images

⇒ The likelihood of each of them being chosen. E.g., 1/400 each

I Random variable specified by all outcomes and respective probabilities
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Vectorization

I Do observe that the dataset consists of images ≡ matrices

I Each image is stored in a matrix of size 112× 92

Mi =


m1,1 m1,2 . . . m1,92

m2,1 m2,2 . . . m2,92

...
...

. . .
...

m112,1 m112,2 . . . m112,92


I Stack columns of image Mi into the vector xi with length 10, 304

xi =
[
m1,1, m21, . . ., m112,1, m1,2, m2,2, . . ., m112,2,

..., m1,92, m2,92, . . ., m112,92

]T
I Images are matrices Mi ∈ R112×92. Signals are vectors xi ∈ R10,304
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Realizations

I Realization x is an individual face pulled from set of possible outcomes

I Three possible realizations shown

I Realizations are just regular signals. Nothing random about them
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Expectation, variance and covariance

I Signal’s expectation is the concatenation of individual expectations

E [X] =
[
E [X (0)] , E [X (1)] , . . . E [X (N − 1)]

]T
=

∫∫
xpX(x) dx

I Variance of nth element ⇒ Σnn = var [X (n)] = E
[(
X (n)− E [X (n)]

)2
]

I Measures variability of nth component

I Covariance between the signal components X (n) and X (m)

Σnm = E
[(
X (n)− E [X (n)]

)(
X (m)− E [X (m)]

)]
= Σmn

I Measures how much X (n) predicts X (m). Love, hate, and indifference

⇒ Σnm = 0, components are unrelated. They are orthogonal

⇒ Σnm > 0 (Σnm < 0), move in same (opposite) direction
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Covariance matrix

I Assume that E [X] = 0 so that covariances are Σnm = E [X (n)X (m)]

I Consider the expectation E
[
xxT

]
of the (outer) product xxT

I We can write the outer product xxT as

xxT =



x(0)x(0) · · · x(0)x(n) · · · x(0)x(N − 1)
.
.
.

. . .
.
.
.

. . .
.
.
.

x(n)x(0) · · · x(n)x(n) · · · x(n)x(N − 1)
.
.
.

. . .
.
.
.

. . .
.
.
.

x(N − 1)x(0) · · · x(N − 1)x(n) · · · x(N − 1)x(N − 1)



I
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Covariance matrix

I Assume that E [X] = 0 so that covariances are Σnm = E [X (n)X (m)]

I Consider the expectation E
[
xxT

]
of the (outer) product xxT

I Expectation E
[
xxT

]
implies expectation of each individual element

E
[

xxT
]

=



E[x(0)x(0)] · · · E[x(0)x(n)] · · · E[x(0)x(N − 1)]
.
.
.

. . .
.
.
.

. . .
.
.
.

E[x(n)x(0)] · · · E[x(n)x(n)] · · · E[x(n)x(N − 1)]
.
.
.

. . .
.
.
.

. . .
.
.
.

E[x(N − 1)x(0)] · · · E[x(N − 1)x(n)] · · · E[x(N − 1)x(N − 1)]



I
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Covariance matrix

I Assume that E [X] = 0 so that covariances are Σnm = E [X (n)X (m)]

I Consider the expectation E
[
xxT

]
of the (outer) product xxT

I The (n,m) element of the matrix E
[
xxT

]
is the covariance Σnm

E
[

xxT
]

=



Σ00 · · · Σ0n · · · Σ0(N−1)

.

.

.
. . .

.

.

.
. . .

.

.

.
Σn0 · · · Σnn · · · Σn(N−1)

.

.

.
. . .

.

.

.
. . .

.

.

.
Σ(N−1)0 · · · Σ(N−1)n · · · Σ(N−1)(N−1)



I Define the covariance matrix of random signal X as Σ := E
[
xxT

]
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Definition of covariance matrix

I When the mean is not null define the covariance matrix of X as

Σ := E
[(

x− E [x]
)(

x− E [x]
)T ]

I As before, the (n,m) element of Σ is the covariance Σnm

((Σ))nm = E
[(
X (n)− E [X (n)]

)(
X (m)− E [X (m)]

)]
= Σnm

I The covariance matrix Σ is an arrangement of the covariances Σnm

I The diagonal of Σ contains the (auto)variances Σnn = var [X (n)]

I Covariance matrix is symmetric ⇒ ((Σ))nm = Σnm = Σmn = ((Σ))mn
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Mean of face images

I All images are equally likely ⇒ probability 1/400 for each image

I The mean face is the regular average ⇒ E [x] =
1

400

400∑
i=1

xi

I Average image looks something, sort of, like an average face
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Covariance matrix of face images

I Covariance matrix ⇒ Σ =
1

400

400∑
i=1

(
xi − E [x]

)(
xi − E [x]

)T

I Heat map of covariance
matrix Σ shown on left

I Large correlation values
around diagonal

I Large correlation values
every 112 elements (jump a
row on matrix)
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Principal Component Analysis (PCA) transform

The discrete Fourier transform with unitary matrices

Stochastic signals

Principal Component Analysis (PCA) transform

Dimensionality reduction

Principal Components

Face recognition
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Eigenvectors and eigenvalues of covariance matrix

I Consider a vector with N elements ⇒ v = [v(0), v(1), . . . , v(N − 1)]

I We say that v is an eigenvector of Σ if for some scalar λ ∈ R

Σv = λv

I We say that λ is the eigenvalue associated to v

w

Σw

v1

Σv1 = λ1v1 v2

Σv2 = λ2v2

I In general, non-eigenvectors w and Σw point in different directions

I But for eigenvectors v, the product vector Σv is collinear with v

Signal and Information Processing Principal Component Analysis 34



Normalization

I If v is an eigenvector, αv is also an eigenvector for any scalar α ∈ R,

Σ(αv) = α(Σv) = αλv = λ(αv)

I Eigenvectors are defined up to a constant

I We use normalized eigenvectors with unit energy ⇒ ‖v‖2 = 1

I If we compute v with ‖v‖2 6= 1 replace v with v/‖v‖

I There are N eigenvalues and distinct associated eigenvectors

⇒ Some technical qualifications are needed in this statement
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Ordering

Theorem
The eigenvalues of Σ are real and nonnegative ⇒ λ ∈ R and λ ≥ 0

Proof.

I Begin by observing that we can write λ = vHΣv/‖v‖2. Indeed

vHΣv = vH (Σv) = vH (λv) = λvHv = λ‖v‖2

I Complete by showing that vTΣv is nonnegative. Indeed (assume E [x] = 0)

vHΣv = vHE
[
xxH
]

v = E
[
vHxxHv

]
= E

[(
vHx
)(

xHv
)]

= E
[(

vHx
)2
]
≥ 0

I Order eigenvalues from largest to smallest ⇒ λ0 ≥ λ1 ≥ . . . ≥ λN−1

I Eigenvectors inherit order ⇒ v0, v1, . . . , vN−1

I The nth eigenvector of Σ is associated with its nth largest eigenvalue
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Eigenvectors are orthonormal

Theorem
Eigenvectors of Σ associated with different eigenvalues are orthogonal

Proof.

I Normalized eigenvectors v and u associated with eigenvalues λ 6= µ

Σv = λv, Σu = µu

I Since the matrix Σ is symmetric we have ΣH = Σ, and it follows

uHΣv =
(
uHΣv

)H
= vHΣHu = vHΣu

I Make Σv = λv on the leftmost side and Σu = µu on the rightmost

uHλv = λuHv = µvHu = vHµu

I Eigenvalues are different ⇒ Relationship can only be true if vHu = 0
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Eigenvectors of face images (1D)

I One dimensional representation of first four eigenvectors v0, v1, v2, v3
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Eigenvectors of face images (2D)

I Two dimensional representation of first four eigenvectors v0, v1, v2, v3
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Eigenvector matrix

I Define the matrix T whose kth column is the kth eigenvector of Σ

T = [v0, v1, . . . , vN−1]

I Since the eigenvectors vk are orthonormal, the product THT is

THT =

[
v0 · · · vk · · · vN−1

]


vH
0

...
vH
k

...
vH
N−1





vH
0 v0 · · · vH

1 vk · · · vH
0 vN−1

...
. . .

...
. . .

...
vH
k v0 · · · vH

k vk · · · vH
k vN−1

...
. . .

...
. . .

...
vH
N−1vN−1 · · · vH

N−1vk · · · vH
N−1vN−1


=



1 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · 1 · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · 1



I The eigenvector matrix T is Hermitian ⇒ THT = I
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Principal component analysis transform

I Any Hermitian T can be used to define an info processing transform

I Define principal component analysis (PCA) transform ⇒ y = THx

I And the inverse (i)PCA transform ⇒ x̃ = Ty

I Since T is Hermitian, iPCA is, indeed, the inverse of the PCA

x̃ = Ty = T
(
THx

)
= TTHx = Ix = x

I Thus y is an equivalent representation of x ⇒ Back and forth

I And, also because T is Hermitian, Parseval’s theorem holds

‖x‖2 = xHx = (Ty)H Ty = yHTHTy = yHy = ‖y‖2

I Modifying elements yk means altering energy composition of signal
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Discussions

I The PCA transform is defined for any signal (vector) x

⇒ But we expect to work well only when x is a realization of X

I Write the iPCA in expanded form and compare with the iDFT

x(n) =
N−1∑
k=0

y(k)vk(n) ⇔ x(n) =
N−1∑
k=0

X (k)ekN(n)

I The same except that they use different bases for the expansion

I Still, like developing a new sense.

I But not one that is generic. Rather, adapted to the random signal X
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Coefficients of a projected face image

I PCA transform coefficients for given face image with 10,304 pixels

I Substantial energy in the first 15 PCA coefficients y(k) with k ≤ 15

I Almost all energy in the first 50 PCA coefficients y(k) with k ≤ 50

⇒ This is a compression factor of more than 200
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Reconstructed face images

I Reconstructed image for increasing number of PCA coefficients

⇒ Increasing number of coefficients increases accuracy.

⇒ Using 50 coefficients suffices
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Reconstructed face images

I Reconstructed image for increasing number of PCA coefficients

⇒ Increasing number of coefficients increases accuracy.

⇒ Using 50 coefficients suffices
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Reconstructed face images

I Reconstructed image for increasing number of PCA coefficients

⇒ Increasing number of coefficients increases accuracy.

⇒ Using 50 coefficients suffices
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Reconstructed face images

I Reconstructed image for increasing number of PCA coefficients

⇒ Increasing number of coefficients increases accuracy.

⇒ Using 50 coefficients suffices
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Reconstructed face images

I Reconstructed image for increasing number of PCA coefficients

⇒ Increasing number of coefficients increases accuracy.

⇒ Using 50 coefficients suffices
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Reconstructed face images

I Reconstructed image for increasing number of PCA coefficients

⇒ Increasing number of coefficients increases accuracy.

⇒ Using 50 coefficients suffices
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Reconstructed face images

I Reconstructed image for increasing number of PCA coefficients

⇒ Increasing number of coefficients increases accuracy.

⇒ Using 50 coefficients suffices
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Coefficients of the same person

I PCA transform y for two different pictures of the same person

I Coefficients are similar, even if pose and attitude are different

⇒ E.g., first two coefficients almost identical
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Coefficients of different persons

I PCA transform y for pictures of different persons

I Similar pose and attitude, but PCA coefficients are still different

⇒ Can be used to perform face recognition. More later
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Dimensionality reduction

The discrete Fourier transform with unitary matrices

Stochastic signals

Principal Component Analysis (PCA) transform

Dimensionality reduction

Principal Components

Face recognition
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Compression with the DFT

I Transform signal x into frequency domain with DFT X = FHx

I Recover x from X through iDFT matrix multiplication x = FX

I We compress by retaining K < N DFT coefficients to write

x̃(n) =
K−1∑
k=0

X (k)e j2πkn/N

I Equivalently, we define the compressed DFT as

X̃(k) = X (k) for k < K , X̃(k) = 0 otherwise

I Reconstructed signal is obtained with iDFT ⇒ x̃ = FX̃
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Compression with the PCA

I Transform signal x into eigenvector domain with PCA y = THx

I Recover x from y through iPCA matrix multiplication x = Ty

I We compress by retaining K < N PCA coefficients to write

x̃(n) =
K−1∑
k=0

y(k)vk(n)

I Equivalently, we define the compressed PCA as

ỹ(k) = y(k) for k < K , ỹ(k) = 0 otherwise

I Reconstructed signal is obtained with iPCA ⇒ x̃ = Tỹ
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Why keeping the first K coefficients?

I Why do we keep the first K DFT coefficients?

⇒ Because faster oscillations tend to represent faster variation

⇒ Also, not always, sometimes we keep the largest coefficients

I Why do we keep the first K PCA coefficients?

⇒ Eigenvectors with lower ordinality have larger eigenvalues

⇒ Larger eigenvalues entail more variability

⇒ And more variability signifies more dominant features

I Eigenvectors with large ordinality represent finer signal features

⇒ And can often be omitted
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Dimensionality reduction

I PCA compression is (more accurately) called dimensionality reduction

⇒ Do not compress signal. Reduce number of dimensions

Σ =

[
3/2 1/2
1/2 3/2

]
I Covariance eigenvectors mix coordinates

v0 =

[
1
1

]
v1 =

[
1
−1

]
I Eigenvalues are λ0 = 2 and λ1 = 1

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

I Signal varies more in v0 = [1, 1]T direction than in v1 = [1,−1]T

⇒ Study one dimensional signal x̃ = y(0)v0

⇒ instead of the original two dimensional signal x
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Expected reconstruction error

I PCA dimensionality reduction minimizes the expected error energy

I To see that this is true, define the error signal as ⇒ e := x− x̃

I The energy of the error signal is ⇒ ‖e‖2 = ‖x− x̃‖2

I The expected value of the energy of the error signal is

E
[
‖e‖2

]
= E

[
‖x− x̃‖2

]
I Keeping the first K PCA coefficients minimizes E

[
‖e‖2

]
⇒ Among all reconstructions that use, at most, K coefficients
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Dimensionality reduction expected error

Theorem
The expectation of the reconstruction error is the sum of the eigenvalues
corresponding to the eigenvectors of the coefficients that are discarded

E
[
‖e‖2

]
=

N−1∑
k=K

λk

I It follows that keeping the first K PCA coefficients is optimal

⇒ In the sense that it minimizes the Expected error energy

I Good on average. Across realizations of the stochastic signal X

I Need not be good for given realization (but we expect it to be good)
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Proof of expected error expression

Proof.

I Error signal signal is e := x− x̃. Define error PCA transform as f = THx

I Using Parseval’s (energy conservation) we can write the energy of e as

‖e‖2 = ‖f‖2 =
N−1∑
k=K

y 2(k)

I In the last equality we used that f = y− ỹ = [0, . . . , 0,y(K), . . . , y(N − 1)]

I Here, we are interested in the expected value of the error’s energy

I Take expectation on both sides of equality ⇒ E
[
‖e‖2

]
=

N−1∑
k=K

E
[
y 2(k)

]
I Used the fact that expectations are linear operators
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Proof of expected error expression

Proof.

I Compute expected value E
[
y 2(k)

]
of the squared PCA coefficient y(k)

I As per PCA transform definition y(k) = vHx, which implies

E
[
y 2(k)

]
= E

[
(vH

k x)2
]

= E
[
vH
k xxTvk

]
= vH

k E
[
xxT

]
vk

I Covariance matrix: Σ := E
[
xxT

]
. Eigenvector definition Σvk = λk . Thus

E
[
y 2(k)

]
= vH

k Σvk = vH
k λkvk = λk‖vk‖2

I Substitute into expression for E
[
‖e‖2

]
to write ⇒ E

[
‖e‖2

]
=

N−1∑
k=K

λk
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Principal eigenvalues for face dataset

I Covariance matrix eigenvalues for faces dataset.

I Expected approximation error ⇒ Tail sum of eigenvalue distribution

⇒ Average across all realizations. Not the same as actual error
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I First 10 coefficients have 98% of energy.

I Eigenvectors with index k > 50 have 10−3% of energy on average
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Reconstructed face images

I Increasing number of coefficients reduces reconstruction error

I Average and actual reconstruction not the same (although “close”)

I Keep 1 coefficient ⇒ Reconstruction error ⇒ 0.06

⇒ Sum of removed eigenvalues ⇒ 0.52
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Reconstructed face images

I Increasing number of coefficients reduces reconstruction error

I Average and actual reconstruction not the same (although “close”)

I Keep 5 coefficients ⇒ Reconstruction error ⇒ 0.03

⇒ Sum of removed eigenvalues ⇒ 0.11
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Reconstructed face images

I Increasing number of coefficients reduces reconstruction error

I Average and actual reconstruction not the same (although “close”)

I Keep 10 coefficients ⇒ Reconstruction error ⇒ 0.02

⇒ Sum of removed eigenvalues ⇒ 0.04
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Reconstructed face images

I Increasing number of coefficients reduces reconstruction error

I Average and actual reconstruction not the same (although “close”)

I Keep 20 coefficients ⇒ Reconstruction error ⇒ 0.01

⇒ Sum of removed eigenvalues ⇒ 0.01
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Reconstructed face images

I Increasing number of coefficients reduces reconstruction error

I Average and actual reconstruction not the same (although “close”)

I Keep 30 coefficients ⇒ Reconstruction error ⇒ 0.006

⇒ Sum of removed eigenvalues ⇒ 0.003
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Reconstructed face images

I Increasing number of coefficients reduces reconstruction error

I Average and actual reconstruction not the same (although “close”)

I Keep 40 coefficients ⇒ Reconstruction error ⇒ 0

⇒ Sum of removed eigenvalues ⇒ 0
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Reconstructed face images

I Increasing number of coefficients reduces reconstruction error

I Average and actual reconstruction not the same (although “close”)

I Keep 50 coefficients ⇒ Reconstruction error ⇒ 0

⇒ Sum of removed eigenvalues ⇒ 0
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Evolution of reconstruction error

I Error for reconstruction process

I one realization (red), energy of removed eigenvalues (blue)

0 5 10 15 20 25 30 35 40 45 50
0

0.1

0.2

0.3

0.4

0.5

0.6

Number of Principal Components

Signal and Information Processing Principal Component Analysis 70



Principal Components

The discrete Fourier transform with unitary matrices

Stochastic signals

Principal Component Analysis (PCA) transform

Dimensionality reduction

Principal Components

Face recognition
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Signals with uncorrelated components

I A random signal X with uncorrelated components is one with

Σnm = E
[(
X (n)− E [X (n)]

)(
X (m)− E [X (m)]

)]
= 0

I Different components are unrelated to each other.

I They represent different (orthogonal) aspects of signal

I Components uncorrelated ⇒ The covariance matrix is diagonal

Σ = E
[(

x − E [x]
)(

x − E [x]
)T ]

=



Σ00 · · · Σ0n · · · Σ0(N−1)

...
. . .

...
. . .

...
Σn0 · · · Σnn · · · Σn(N−1)

...
. . .

...
. . .

...
Σ(N−1)0 · · · Σ(N−1)n · · · Σ(N−1)(N−1)



I How do eigenvectors (principal components) of uncorrelated signals
look?
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Uncorrelated signal with 2 components

I Signal X = [X (0),X (1)]T with 2 components and diagonal covariance

Σ =

[
2 0
0 1

]
I Covariance eigenvectors are

v0 =

[
1
0

]
v1 =

[
0
1

]
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I The respective associated eigenvalues are λ0 = 2 and λ1 = 1

I Eigenvectors are orthogonal, as they should.

⇒ Represent directions of separate signal variability

⇒ Rate of variability given by associated eigenvalue
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Another uncorrelated signal with 2 components

I Signal X = [X (0),X (1)]T with 2 components and diagonal covariance

Σ =

[
1 0
0 2

]
I Covariance eigenvectors reverse order

v0 =

[
0
1

]
v1 =

[
1
0

]
I Associated eigenvalues are λ0 = 2 and λ1 = 1

I Eigenvectors still orthogonal, as they should.

⇒ Directions of separate signal variability

⇒ Rate given by associated eigenvalue
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Signal with correlated components

I Signal X = [X (0),X (1)]T with 2 components and diagonal covariance

Σ =

[
3/2 1/2
1/2 3/2

]
I Covariance eigenvectors mix coordinates

v0 =

[
1
1

]
v1 =

[
1
−1

]
I Eigenvalues are λ0 = 2 and λ1 = 1

−3 −2 −1 0 1 2 3
−3

−2

−1

0
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3

I The eigenvalues are orthogonal. This is true for any covariance matrix

⇒ Mix coordinates but still represent directions of separate variability

⇒ Rate of change also given by associated eigenvalue
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Eigenvectors in uncorrelated signals

I Uncorrelated components means diagonal covariance matrix

Σ =



Σ00 · · · Σ0n · · · Σ0(N−1)

...
. . .

...
. . .

...
Σn0 · · · Σnn · · · Σn(N−1)

...
. . .

...
. . .

...
Σ(N−1)0 · · · Σ(N−1)n · · · Σ(N−1)(N−1)


I If variances are ordered, kth eigenvector is k-shifted delta δ(n − k)

I The corresponding variance Σkk is the associated eigenvalue

I Eigenvectors represent directions of orthogonal variability

I Rate of variability given by associated eigenvalue
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Eigenvectors in correlated signals

I Correlated components means a full covariance matrix

Σ =



Σ00 · · · Σ0n · · · Σ0(N−1)

...
. . .

...
. . .

...
Σn0 · · · Σnn · · · Σn(N−1)

...
. . .

...
. . .

...
Σ(N−1)0 · · · Σ(N−1)n · · · Σ(N−1)(N−1)


I The eigenvectors vk now mix different components

⇒ But they still represent directions of orthogonal variability

⇒ With the rate of variability given by associated eigenvalue

I PCA transform represents a signal as a sum of orthonormal vectors

⇒ Each of which represents independent variability

I Principal components (eigenvectors) with larger eigenvalues represent
directions in which the signal has more variability
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Face recognization

The discrete Fourier transform with unitary matrices

Stochastic signals

Principal Component Analysis (PCA) transform

Dimensionality reduction

Principal Components

Face recognition
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Face Recognition

I Observe faces of known people ⇒ Use them to train classifier

I Observe a face of unknown character ⇒ Compare and classify

I The dataset we’ve used contains 10 different images of 40 people
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Training set

I Separate the first 9 of each person to construct training set

I Interpret these images as know, and use them to train classifier
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Test set

I Utilize the last image of each person to construct a test set

I Interpret these images as unknown, and use them to test classifier

Signal and Information Processing Principal Component Analysis 81



Nearest neighbor classification

I Training set contains (signal, label) pairs ⇒ T = {(xi , zi )}Ni=1

I Signal x is the face image. Label z is the person’s “name”

I Given (unknown) signals x, we want to assign a label

I Nearest neighbor classification rule

⇒ Find nearest neighbor signal in the training set

xNN := argmin
xi∈T

‖xi − x‖2

⇒ Assign the label associated with the nearest neighbor

xNN ⇒ (xi , zi ) ⇒ z = zi

I Reasonable enough. It should work. But it doesn’t
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The signal and the noise

I Image has a part that is inherent to the person ⇒ The actual signal

I But it also contains variability ⇒ Which we model as noise

xi = x̃i + w

I Problem is, there is more variability (noise) than signal
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Figure: Test image
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Figure: Nearest neighbor
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PCA nearest neighbor classification

I Compute PCA for all elements of training set ⇒ yi = THxi
I Redefine training set as one with PCA transforms ⇒ T = {(yi , zi )}Ni=1

I Compute PCA transform of (unknown) signal x ⇒ y = THx

I PCA nearest neighbor classification rule

⇒ Find nearest neighbor signal in training set with PCA transforms

yNN := argmin
yi∈T

‖yi − y‖2

⇒ Assign the label associated with the nearest neighbor

yNN ⇒ (yi , zi ) ⇒ z = zi

I Reasonable enough. It should work. And it does
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Why does PCA work for face recognition?

I Recall: image = a part that belongs to the person + noise

xi = x̃i + w

I PCA transformation T = [vT
0 ; . . . ; vT

N−1] leads to

yi = Txi = Tx̃i + Tw

I PCA concentrates energy of x̃i on a few components

I But it keeps the energy of the noise on all components

I Keeping principal components improves the accuracy of classification

⇒ Because it increases the signal to noise ratio
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PCA on the training set

I The training set D = {x1, . . . , x360} where xi ∈ R10304 is given

I Compute the mean vector and the covariance matrix as

x̄ =
1

n

n∑
i=1

xi and Σ :=
1

n

n∑
i=1

(xi − x̄i )(xi − x̄i )
T .

I Find the k largest eigenvalues of Σ

I Store their corresponding eigenvalues v0, . . . , vk−1 ∈ R10304 as P.C.

⇒ The Principal Components v0, . . . , vk−1 are called eigenfaces

I Create the PCA transform matrix as T = [vT
0 ; . . . ; vT

k−1]

I Project the training set into the space of P.C.s yi = Txi

I Σ depends training set, but is also a good description of the test set
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Average face of the training set

I The average face of the training set

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

100

110

Signal and Information Processing Principal Component Analysis 87



PCA on the training set

I The top 6 eigenfaces of the training set.
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Finding the nearest neighbor

Num. of P.C. test point N.N. in the training set

k = 1
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k = 5
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PCA improves classification accuracy

Classification method test point result of classification

Naive N.N.
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PCA-ed(k = 5) N.N.
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