
Inverse Discrete Fourier transform (DFT)

Alejandro Ribeiro

February 5, 2019

Suppose that we are given the discrete Fourier transform (DFT) X :
Z → C of an unknown signal. The inverse (i)DFT of X is defined as the
signal x : [0, N − 1]→ C with components x(n) given by the expression

x(n) :=
1√
N

N−1

∑
k=0

X(k)ej2πkn/N =
1√
N

N−1

∑
k=0

X(k) exp(j2πkn/N) (1)

When x is obtained from X through the relationship in (1) we write
x = F−1(X). Recall that if X is the DFT of some signal, it must be peri-
odic with period N. That means that in (1) we can replace the sum over
the frequencies k ∈ [0, N− 1] with a sum over any other set of N consecu-
tive frequencies. In particular, the iDFT of X can be alternatively written
as

x(n) =
1√
N

N/2

∑
k=−N/2+1

X(k)ej2πkn/N (2)

To see that (2) is correct, it suffices to note that X(k + N) = X(k) and
that ej2π(k+N)n/N = ej2πkn/N to conclude that each one of the terms that
appears in (1) is equivalent to one, and only one, of the terms that appear
in (2).

It is not difficult to see that taking the iDFT of the DFT of a signal x
recovers the original signal x. This means that the iDFT is, as its names
indicates, the inverse operation to the DFT. This result is of sufficient
importance to be highlighted in the form of a theorem that we state next.

Theorem 1 Given a discrete signal x : [0, N − 1] → C, let X = F (x) : Z →
C stand in for the DFT of x and x̃ = F−1(X) : [0, N − 1] → C be the iDFT of
X. We then have that x ≡ x̃, or, equivalently,

F−1[F (x)] = x. (3)

1

Proof: Write down a proof of Theorem 1. �

The result in Theorem 1 is important because it tells us that a signal
x can be recovered from its DFT X by taking the inverse DFT. This im-
plies that x and X are alternative representations of the same information
because we can move from one to the other using the DFT and iDFT op-
erations. If we are given x we can compute X through the DFT, and if we
are given X we can compute x through the iDFT.

An important practical consequence of this equivalence is that if we
are given one of the representations, say the signal x, and the other one is
easier to interpret, say the DFT X, we can compute the respective trans-
form and proceed with the analysis. This analysis will neither introduce
spurious effect, nor miss important features. Since both representations
are equivalent, it is just a matter of which of the representations makes
the identification of patterns easier. There is substantial empirical evi-
dence that it is easier to analyze signals in the frequency domain—i.e.,
the DFT X—than it is to analyze signals in the time domain—the original
signal, x.

1 Signal reconstruction and compression

A more mathematical consequence of Theorem 1 is that any signal x can
be written as a sum of complex exponentials. To see that this is true,
we just need to reinterpret the equations for the DFT and iDFT. In this
reinterpretation, the components of the signal x can be written as [cf. (1)
and (2)]

x(n) =
1√
N

N−1

∑
k=0

X(k)ej2πkn/N =
1√
N

N/2

∑
k=−N/2+1

X(k)ej2πkn/N (4)

with coefficients X(k) that are given by the formula [cf. equation (1) in
lab assignment 2]

X(k) :=
1√
N

N−1

∑
n=0

x(n)e−j2πkn/N (5)

This is quite a remarkable fact. We may have a signal that doesn’t look
at all like an oscillation, but it is a consequence of Theorem 1 that such
signal can be written as a sum of oscillations.

It is instructive to rewrite (4) in an expanded form that makes the lat-
ter observation clearer. To do so, consider the rightmost expression. Write

2

the N summands explicitly and reorder the terms so that the terms cor-
responding to positive frequency k and its opposite frequency −k appear
together. Doing so and noting that frequencies k = 0 and k = N/2 have
no corresponding opposites, it follows that (4) is equivalent to(√

N
)

x(n) = X(0) ej2π0n/N

+ X(1) ej2π1n/N + X(−1) e−j2π1n/N

+ X(2) ej2π2n/N + X(−2) e−j2π2n/N

...
...

...
...

+ X
(

N
2
− 1
)

ej2π(N
2 −1)n/N + X

(
−N

2
+ 1
)

e−j2π(N
2 −1)n/N

+ X
(

N
2

)
ej2π(N

2)n/N (6)

where we have multiplied both sides of the equality by
√

N to simplify the
expression. Observe that the term that corresponds to frequency k = 0 is
simply X(0)ej2π0n/N = X(0). We write the exponential part of this factor
to avoid breaking the symmetry of the expression.

We can interpret (6) as a set of successive approximations of x(n) that
introduce ever finer details in the form of faster signal variations. I.e., we
can choose to approximate the signal x by the signal x̃K which we define
by truncating the DFT sum to the first K terms in (6),

x̃K(n) :=
1√
N

[
X(0) +

K

∑
k=1

(
X(k)ej2πkn/N + X(−k)e−j2πkn/N

)]
. (7)

The approximation that uses k = 0 only, is a constant approximation of
the signal x. The approximation that uses k = 0 and k = ±1 approximates
x with a constant and a single oscillation, the approximation that adds
k = ±2, refines the signal by adding finer details in the form of a (more
rapid) double oscillation. In general, when adding the kth frequency
and its opposite −k, we add an oscillation of frequency k that makes
the approximation closer to the actual signal. If we have a signal that
varies slowly, a representation with just a few coefficients is sufficient.
For signals that vary faster, we need to add more coefficients to obtain a
reasonable approximation.

Alternatively, if only gross details are important, we can eliminate the
finer irrelevant features by studying the approximated signal instead of

3

the original signal. This observation is related to our digression on the
empirical value of the DFT as a tool for pattern identification. The repre-
sentation of x as a sum of complex exponentials facilitates identification
of relevant time features that tend to correspond to variations that are
slower than patterns. E.g., weather varies from day to day, but there is
an underlying slower pattern that we call climate. Weather will mani-
fest in the DFT coefficients for large frequencies and climate in the DFT
coefficients associated with slower frequencies. We can study climate by
reconstructing a weather signal x with a small number of DFT coefficients.

In this part of the lab we will study the quality of the reconstruction
of x with approximating signals x̃K as we increase K.

1.1 Computation of the iDFT
1.1 Computation of the iDFT. Consider a DFT X corresponding to a
real signal of even duration N and assume that we are are given the
N/2+ 1 coefficients corresponding to frequencies k = 0, 1, . . . , N/2. Write
down a function that takes these N/2 coefficients as input, as well as the
associated sampling frequency fs, and returns the iDFT x = F−1(X) of
the given X. Return also a vector of real times associated with the signal
samples.

1.2 Signal reconstruction
1.2 Signal reconstruction. Suppose now that we are given the first K + 1
coefficients of the DFT of a signal of duration N. Write down a function
that returns the approximated signal x̃K with elements x̃K(n) as given in
(7). The inputs to this function include the K + 1 coefficients, the signal
duration N, and the sampling frequency fs. Return also a vector of real
times associated with the signal samples. Hint: You can use what you solved
in Part 1.1 to help solve this part.

1.3 Reconstruction of a square pulse
1.3 Reconstruction of a square pulse. Generate a pulse1 of duration
T = 32s sampled at a rate fs = 8Hz and length T0 = 4s and compute
its DFT2. Use the function in Part 1.2 to create successive reconstructions
of the pulse. Compute the energy of the difference between the signals
x and x̃K. This energy should decrease for increasing K. Report your
results for K = 2, K = 4, K = 8, and K = 16 K = 32. Repeat for a pulse
of length T0 = 2s. Since this pulse varies faster, the reconstruction should
be worse. Is that the case?

1It is recommended that you use the provided function sqpulse(). Remember to check
the help sqpulse command to learn how the function works.

2Use of provided function dft() is recommended. Please, remember to check the help
dft command to learn how the function is used

4

1.4 Reconstruction of a triangular pulse
1.4 Reconstruction of a triangular pulse. Generate a triangular pulse3

of duration T = 32s sampled at a rate fs = 8Hz and length T0 = 4s and
compute its DFT. Use the function in Part 1.2 to create successive recon-
structions of the pulse. Compute the energy of the difference between the
signals x and x̃K. Report your results for K = 2, K = 4, K = 8, and K = 16
K = 32. This pulse should be easier to reconstruct than the square pulse.
Is that true?

1.5 The energy of the difference signal
1.5 The energy of the difference signal. In parts 1.3 and 1.4 you have
computed the energy of the difference between the signals x and x̃K.
Just to be formal, define the error signal ρK as the one with components
ρK(n) = x(n)− x̃K(n). The energy you have computing is therefore given
by

‖ρK‖2 =
N−1

∑
n=0

∣∣ρK(n)
∣∣2 =

N−1

∑
n=0

∣∣x(n)− x̃K(n)
∣∣2. (8)

Using Parseval’s theorem, this energy can be computed from the values
of the DFT coefficients that you are neglecting to include in the signal
approximation. Explain how this can be done, and verify that your nu-
merical results coincide.

A square wave can be visualized as a train of square pulses pasted next
to each other. Mathematically, it is easier to generate a square wave by
simply taking the sign of a discrete cosine. Consider then a given fre-
quency f0 and a given sampling frequency fs and define the square wave
of frequency f0 as the signal

x(n) = sign
[
cos

(
2π(f0/ fs)n

)]
. (9)

This signal can be reconstructed with a few DFT coefficients, but not
with the first K. To compress this signal well, we pick the K largest DFT
coefficients, which are not necessarily the first K. When reconstructing
the signal, we use a modified version of (7) in which we sum over the
coefficients that were picked during the compression stage.

3It is recommended that you use the provided function tripulse(). Remember to
check the help tripulse command to learn how the function works.

5

1.6 Signal compression
1.6 Signal compression. Write down a function that receives as input a
signal x of length N, the sampling frequency fs, and a compression target
K. The function outputs a vector with the K largest DFT coefficients and
the corresponding set of frequencies at which these coefficients are ob-
served. Notice that each of the coefficients that is kept requires storage of
two numbers, the coefficient and the frequency. This is disadvantageous
with respect to keeping just the first K coefficients. This more sophisti-
cated compression is justified only if keeping these coefficients reduces
the total number of DFT coefficients by a factor larger than 2.

1.7 The why of signal compression
1.7 The why of signal compression. Why do we keep the largest DFT
coefficients? This question has a very precise mathematical answer that
follows from Parseval’s Theorem. Provide that very precise answer. You
may want to look at Part 1.5.

1.8 Signal reconstruction
1.8 Signal reconstruction. Write down a function that receives as input
the output to the function in Part 1.6 and reconstructs the original signal
x. Hint: You can use what you solved in Part 1.1, and Part 1.2 to help solve this
part.

1.9 Compression and reconstruction of a square wave
1.9 Compression and reconstruction of a square wave. Generate a
square wave of duration T = 32s sampled at a rate fs = 8Hz and fre-
quency 0.25Hz. Compress and reconstruct this wave using the functions
in parts 1.6 and 1.8. Try different compression targets and report the en-
ergy of the error signal for K = 2, K = 4, K = 8 and K = 16. This problem
should teach you that a square wave can be approximated better than a
square pulse if you keep the same number of coefficients. This should
be the case because the square wave looks the same at all points, but the
square pulse doesn’t. Explain this statement.

2 Speech processing

The DFT, in conjunction with the iDFT can be used to perform some
basic speech analysis. In this part of the lab you will record your voice
and perform a few interesting spectral transformations. For this part of
the Lab, it is recommended that you use the provided functions dft()
and idft(). Please, remember to check out the commands help dft
and help idft to learn how these functions are used.

6

2.1 Record, graph, and play your voice
2.1 Record, graph, and play your voice. Record 5 seconds of your voice4

sampled at a frequency fs = 20KHz. Plot your voice. Compute the DFT
of your voice and plot its magnitude. Play it back on the speakers.

2.2 Voice compression
2.2 Voice compression. The 5 second recording of your voice at sam-
pling frequency fs = 20KHz is composed of 100,000 samples. Use the
DFT and iDFT to compress your voice by a factor of 2, i.e., store K =
50, 000 numbers instead of 100,000, a factor of 4, (store K = 25, 000 num-
bers), a factor of 8 (store K = 12, 500 numbers), and so on. Keep com-
pressing until the sentence you spoke becomes unrecognizable. You can
perform this compression by keeping the first K DFT coefficients or the
largest K/2 DFT coefficients. Which one works better?

2.3 Voice masking
2.3 Voice masking. Say that you and your partner speak the same sen-
tence. The DFTs of the respective recording will be similar because it’s
the same sentence, but also different, because your voices are different.
You can use this fact to mask your voice by modifying its spectrum, i.e.,
by increasing the contribution of some frequencies and decreasing the
contributions of others. Design a system to record your voice, make it
unrecognizable but intelligible, and play it in the speakers.

As we saw in Part 1.9, it is easier to reconstruct a square wave than it is
to reconstruct a square pulse. This happens because the wave looks the
same at all points, while the pulse looks different at different points. This
suggests a problem with approximating the 5 second recording of your
voice, namely, that you are trying to use the same complex exponentials
to approximate different parts of your speech. You can overcome this
limitation by dividing your signal in pieces and compressing each piece
independently.

2.4 Better voice compression
2.4 Better voice compression. Design a system that divides your speech
in chunks of 100ms, and compresses each of the chunks by a given fac-
tor γ. Design the inverse system that takes the compressed chunks, re-
constructs the individual speech pieces, stitches them together and plays
them back in the speakers. You have just designed a rudimentary MP3
compressor and player. Try this out for different values of γ. Push γ to
the largest possible compression factor.

4The provided function record sound() can be used. Please, remember to check the
command help record sound to learn how the function is used.

7

3 Uncover a secret message

Your teaching assistants will provide you with the Answer to the Ultimate
Question of Life, the Universe, and Everything. ENIAC has been working
on this answer since the early hours of the evening of Valentine’s Day,
1946. Since this information is of a sensitive nature it will be given in
an audio message with a secret code that will make it sound like a fast
paced Happy Birthday song. If you are able to decode the message, report
it back, Jeopardy style.

If you are a nerd, you will think that this is the coolest thing you have
done in your life. In that case, you don’t get points for this answer. If you
are not a nerd, you will get 2 extra points on top of the four you are to
get for the rest of the lab5.

4 Time management

The effort for this particular lab is evenly divided between parts 1 and 2.
There is some overlap between the questions. If you do Part 1 properly,
then Part 2 will be easier. Thus, the time split can be 4 and 6 hours or 6
and 4 hours, depending on the sort of person you are.

Do notice that some of the parts are conceptually simple but have
finer points that may make them difficult to implement. The teaching
assistants will provide substantial help with these fine points.

Part 3 is for the fun of it, although the extra points are for real. If you
get how to solve it, it’ll take you 5 minutes. If you don’t, it will take you 5
years. In any event, don’t waste much time. Try something. If you don’t
crack it, ask around. Some of you will figure it out.

5My lawyer just informed me that I am not allowed to ask your nerdal orientation, and
that in any event, I am not allowed to exhibit any nerder bias. Fine, you get 2 points even if
you’re a nerd.

8

	Signal reconstruction and compression
	Computation of the iDFT
	Signal reconstruction
	Reconstruction of a square pulse
	Reconstruction of a triangular pulse
	The energy of the difference signal
	Signal compression
	The why of signal compression
	Signal reconstruction
	Compression and reconstruction of a square wave

	Speech processing
	Record, graph, and play your voice
	Voice compression
	Voice masking
	Better voice compression

	Uncover a secret message
	Time management

