

Signal Processing on Graphs

Santiago Segarra, Weiyu Huang, and Alejandro Ribeiro Dept. of Electrical and Systems Engineering University of Pennsylvania aribeiro@seas.upenn.edu http://www.seas.upenn.edu/users/~aribeiro/

April 15, 2019

Graph Signals

Graph Laplacian

Graph Fourier Transform (GFT)

Ordering of frequencies

Inverse graph Fourier transform (iGFT)

Graph Filters

Application: Gene Network

Information sciences at ESE

The support of one dimensional signals

- We have studied one-dimensional signals, image processing, PCA
- It is time to understand them in a more unified way
- Consider the support of one-dimensional signals
- There is an underlying graph structure
 - \Rightarrow Each node represents discrete time instants (e.g. hours in a day)
 - \Rightarrow Edges are unweighted and directed

Spring day in Philadelphia

- Similarly, images also have an underlying graph structure
- Each node represents a single pixel
- Edges denote neighborhoods of pixels
 - \Rightarrow Unweighted and undirected

PCA uses another underlying graph

- The previous underlying graph assumes a structure between pixels (neighbors in lattice) a priori of seeing the images
- PCA considers images as defined on a different graph
- Each node represents a single pixel
- Edges denote covariance between pairs of pixels in the realizations
 - \Rightarrow A posteriori after seeing the images
 - \Rightarrow Undirected and weighted, including self loops

Graphs

- Formally, a graph (or a network) is a triplet $(\mathcal{V}, \mathcal{E}, W)$
- $\mathcal{V} = \{1, 2, \dots, N\}$ is a finite set of N nodes or vertices
- $\mathcal{E} \subseteq \mathcal{V} \times \mathcal{V}$ is a set of edges defined as order pairs (n, m)
 - \Rightarrow Write $\mathcal{N}(n) = \{m \in \mathcal{V} : (m, n) \in \mathcal{E}\}$ as the in-neighbors of n
- W: E → R is a map from the set of edges to scalar values, w_{nm}
 ⇒ Represents the level of relationship from n to m
 ⇒ Unweighted graphs ⇒ w_{nm} ∈ {0,1}, for all (n, m) ∈ E
 ⇒ Undirected graphs ⇒ (n, m) ∈ E if and only if (m, n) ∈ E and
 - $w_{nm} = w_{mn}$, for all $(n, m) \in \mathcal{E}$

 \Rightarrow In-neighbors are neighbors

 \Rightarrow More often weights are strictly positive, $\mathcal{W}:\mathcal{E}\rightarrow\mathbb{R}_{++}$

Graphs – examples

- ► Unweighted and directed graphs $\Rightarrow \mathcal{V} = \{0, 1, \dots, 23\}$ $\Rightarrow \mathcal{E} = \{(0, 1), (1, 2), \dots, (22, 23), (23, 0)\}$ $\Rightarrow W : (n, m) \mapsto 1, \text{ for all } (n, m) \in \mathcal{E}$
- ► Unweighted and undirected graphs $\Rightarrow \mathcal{V} = \{1, 2, 3, \dots, 9\}$ $\Rightarrow \mathcal{E} = \{(1, 2), (2, 3), \dots, (8, 9), (1, 4), \dots, (6, 9)\}$ $\Rightarrow W : (n, m) \mapsto 1, \text{ for all } (n, m) \in \mathcal{E}$

► Weighted and undirected graphs $\Rightarrow \mathcal{V} = \{p_1, p_2, p_3, p_4\}$ $\Rightarrow \mathcal{E} = \{(p_1, p_1), (p_1, p_2), \dots, (p_4, p_4)\} = \mathcal{V} \times \mathcal{V}$ $\Rightarrow W : (n, m) \mapsto \Sigma_{nm} = \Sigma_{mn}, \text{ for all } (n, m)$

- Given a graph $G = (\mathcal{V}, \mathcal{E}, W)$ of N vertices,
- Its adjacency matrix $\mathbf{A} \in \mathbb{R}^{N \times N}$ is defined as

$$egin{aligned} \mathcal{A}_{nm} &= egin{cases} w_{nm}, & ext{if}(n,m) \in \mathcal{E} \ 0, & ext{otherwise} \end{aligned}$$

A matrix representation incorporating all information about G
 ⇒ For unweighted graphs, positive entries represent connected pairs
 ⇒ For weighted graphs, also denote proximities between pairs

Inherently defines an ordering of vertices

 \Rightarrow same ordering as in graph signals that we will see soon

Adjacency matrices – examples

Graph signals

- Graph signals are mappings $x : \mathcal{V} \to \mathbb{R}$
- Defined on the vertices of the graph
- May be represented as a vector $\mathbf{x} \in \mathbb{R}^N$
- x_n represents the signal value at the *n*th vertex in \mathcal{V}
- Inherently utilizes an ordering of vertices

⇒ same ordering as in adjacency matrices

- Graphs representing gene-gene interactions
 - \Rightarrow Each node denotes a single gene (loosely speaking)
 - \Rightarrow Connected if their coded proteins participate in same metobolism

A sample network

Graph signals - Genetic profiles

Genetic profiles for each patient can be considered as a graph signal
 ⇒ Signal on each node is 1 if mutated and 0 otherwise

- ► We are going to derive following concepts for graph signal processing
 - \Rightarrow Total variations
 - \Rightarrow Frequency
 - \Rightarrow the notion of high or low frequency will be less obvious
 - \Rightarrow DFT and iDFT for graph signals
 - \Rightarrow Graph filtering
- And apply graph signal processing to gene mutation dataset

Graph Signals

Graph Laplacian

Graph Fourier Transform (GFT)

Ordering of frequencies

Inverse graph Fourier transform (iGFT)

Graph Filters

Application: Gene Network

Information sciences at ESE

- The degree of a node is the sum of the weights of its incident edges
- Given a weighted and undirected graph $G = (\mathcal{V}, \mathcal{E}, W)$
- ► The degree of node *i*, deg(*i*) is defined as deg(*i*) = $\sum_{j \in \mathcal{N}(i)} w_{ij}$ ⇒ where $\mathcal{N}(i)$ is the neighborhood of node *i*

Equivalently, in terms of the adjacency matrix A

- $\Rightarrow \operatorname{deg}(i) = \sum_{i} A_{ij} = \sum_{i} A_{ji}$
- ▶ The degree matrix $\mathbf{D} \in \mathbb{R}^{N \times N}$ is a diagonal matrix s.t. $D_{ii} = deg(i)$
- In directed graphs, each node has an out-degree and an in-degree
 Weights in outgoing and incoming edges need not coincide

Penn

Given a graph G with adjacency matrix A and degree matrix D

▶ We define the Laplacian matrix $\mathbf{L} \in \mathbb{R}^{N \times N}$ as

$\bm{L}=\bm{D}-\bm{A}$

Equivalently, L can be defined element-wise as

$$L_{ij} = \begin{cases} \deg(i) = \sum_{j \in \mathcal{N}(i)} w_{ij} & \text{if } i = j \\ -w_{ij} & \text{if } j \in \mathcal{N}_i \\ 0 & \text{otherwise} \end{cases}$$

- We assume undirected $G \Rightarrow \deg(i)$ is well-defined
- ► The normalized Laplacian can be obtained as L = D^{-1/2}LD^{-1/2} ⇒ We will mainly focus on the unnormalized version

Consider the weighted and undirected graph and its Laplacian

Diagonal elements are strictly positive since no node is isolated
 ⇒ Every node has a non-zero degree
 Off-diagonal elements are non-positive

Multiplication by the Laplacian

- Consider a graph G with Laplacian L and a graph signal x on G
- Signal y = Lx results from multiplying x with the Laplacian
- Component y_i of **y** is (matrix product definition, separate j = i)

$$y_i = \sum_j L_{ij} x_j = L_{ii} x_i + \sum_{j \neq i} L_{ij} x_j$$

▶ We know $L_{ij} = 0$ when $j \notin N_i$ and $L_{ij} = -w_{ij}$ when $j \in N_i$. Then

$$y_i = L_{ii}x_i - \sum_{j \in \mathcal{N}_i} w_{ij}x_j$$

• We also know that $L_{ii} = \deg(i) = \sum_{j \in \mathcal{N}_i} w_{ij}$. Therefore

$$y_i = \sum_{j \in \mathcal{N}_i} w_{ij} x_i - \sum_{j \in \mathcal{N}_i} w_{ij} x_j = \sum_{j \in \mathcal{N}_i} w_{ij} (x_i - x_j)$$

Replaces x_i by weighted average of difference with neighbors

• Multiplying by the Laplcian yields
$$\Rightarrow y_i = \sum_{j \in \mathcal{N}_i} w_{ij}(x_i - x_j)$$

 \blacktriangleright y_i measures the difference between **x** at a node and its neighborhood

- We say the signal diffuses through the graph. Like heat diffuses
- Temperature at i is averaged with neighbor's temperatures
- Further Laplacian multiplications continue diffusion process
 ⇒ L²x brings in energy from 2-hop neighborhood
 ⇒ L³x brings in energy from 3-hop neighborhood
 ⇒ ... L^kx brings in energy from k-hop neighborhood

- The Laplacian quadratic form of graph signal \mathbf{x} is $\Rightarrow \mathbf{x}^T \mathbf{L} \mathbf{x}$
- Quadratic form is a number: row vector \times matrix \times column vector

Theorem

The Laplacian quadratic form of signal $\textbf{x} = [x_0, x_1, \dots, x_N]$ is explicitly given by

$$\mathbf{x}^{\mathsf{T}} \mathbf{L} \mathbf{x} = \frac{1}{2} \sum_{i} \sum_{j \in \mathcal{N}_i} w_{ij} (x_i - x_j)^2 = \frac{1}{2} \sum_{(i,j) \in \mathcal{E}} w_{ij} (x_i - x_j)^2$$

x^TLx quantifies the local variation of signal x
 ⇒ signals can be ordered depending on how much they vary
 ⇒ will be important to order frequencies

Proof.

• We already know the result of the product $\mathbf{y} = \mathbf{L}\mathbf{x}$. Components are:

$$y_i = \sum_{j \in \mathcal{N}_i} w_{ij}(x_i - x_j)$$

• Use explicit form of the product $\mathbf{x}^T \mathbf{y} = \sum_i x_i y_i$ to write

$$\mathbf{x}^T \mathbf{y} = \sum_i x_i y_i = \sum_i \sum_{j \in \mathcal{N}_i} x_i w_{ij} (x_i - x_j)$$

▶ The term $x_i w_{ij}(x_i - x_j)$ has a symmetric $x_j w_{ji}(x_j - x_i)$. Group them

$$\mathbf{x}^{\mathsf{T}}\mathbf{y} = \frac{1}{2}\sum_{i} x_{i} w_{ij}(x_{i} - x_{j}) + x_{j} w_{ji}(x_{j} - x_{i})$$

But the terms in the sum are now simply

$$x_i w_{ij}(x_i - x_j) + x_j w_{ji}(x_j - x_i) = w_{ij}(x_i - x_j)^2$$

- Denote by λ_i and \mathbf{v}_i the eigenvalues and eigenvectors of L
- Since $\mathbf{x}^T \mathbf{L} \mathbf{x} > 0$ for $\mathbf{x} \neq 0$, \mathbf{L} is positive semi-definite
 - \Rightarrow All eigenvalues are nonnegative, i.e. $\lambda_i \ge 0$ for all i
- ► A constant vector **1** is an eigenvector of **L** with eigenvalue 0

$$[\mathsf{L}\mathbf{1}]_i = \sum_{j \in \mathcal{N}(i)} w_{ij}(1-1) = 0$$

▶ Thus, $\lambda_1 = 0$ and $\mathbf{v}_1 = 1/N \ \mathbf{1}$

 \Rightarrow In connected graphs $\lambda_i > 0$ for $i = 2, \ldots, n$

 \Rightarrow Multiplicity of $\lambda = 0$ equals the nr. of connected components

Graph Signals

Graph Laplacian

Graph Fourier Transform (GFT)

Ordering of frequencies

Inverse graph Fourier transform (iGFT)

Graph Filters

Application: Gene Network

Information sciences at ESE

- Given an arbitrary graph $G = (\mathcal{V}, \mathcal{E}, W)$
- ► A graph-shift operator $\mathbf{S} \in \mathbb{R}^{N \times N}$ of graph *G* ia a matrix satisfying $\Rightarrow S_{ij} = 0$ for $i \neq j$ and $(i, j) \notin \mathcal{E}$
- **S** can take nonzero values in the edges of G or in its diagonal
- We have already seen some possible graph-shift operators
 - \Rightarrow Adjacency **A**, Degree **D** and Laplacian **L** matrices
- We restrict our attention to normal shifts S = V∧V^H
 ⇒ Columns of V = [v₁v₂...v_N] correspond to the eigenvectors of S
 ⇒ Λ is a diagonal matrix containing the eigenvalues of S

- Given a graph G and a graph signal x ∈ ℝ^N defined on G
 ⇒ Consider a normal graph-shift S = VΛV^H
- ► The Graph Fourier Transform (GFT) of **x** is defined as

$$\tilde{\mathbf{x}}(k) = \langle \mathbf{x}, \mathbf{v}_k \rangle = \sum_{n=1}^N \mathbf{x}(n) \mathbf{v}_k^*(n)$$

- ► In matrix form, $\tilde{\mathbf{x}} = \mathbf{V}^H \mathbf{x}$
- Given that the columns of V are the eigenvectors v_i of S
 ⇒ x̃(k) = v_k^Hx is the inner product between v_k and x
 ⇒ x̃(k) is how similar x is to v_k
 ⇒ In particular, GFT ≡ DFT when V^H = F, i.e. v_k = e_{kN}

DFT and PCA as particular cases of GFT

For the directed cycle graph, GFT ≡ DFT
 ⇒ if S = A or
 ⇒ if S = L for symmetrized graph
 ⇒ then V^H = F

For the covariance graph, GFT \equiv PCA \Rightarrow if **S** = **A**, then **V**^H = **P**^H

Graph Signals

Graph Laplacian

Graph Fourier Transform (GFT)

Ordering of frequencies

Inverse graph Fourier transform (iGFT)

Graph Filters

Application: Gene Network

Information sciences at ESE

Ordering of frequencies

Recall in conventional DFT, the kth DFT component can be written

$$X(\mathbf{k}) = \langle \mathbf{x}, \mathbf{e}_{\mathbf{k}N} \rangle = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n) e^{-j2\pi \mathbf{k}n/N}$$

► We say X(k) the component for higher frequency given higher k ⇒ There exists a natural ordering of frequencies ⇒ Higher k ⇒ higher oscillations

- We want to quantify the qualitative intuition of 'high oscillations'
- Classical zero crossings # of places signals change signs

$$ZC(\mathbf{x}) = \sum_{n} \mathbf{1} \{ x_n x_{n-1} < 0 \}$$

▶ Graph zero crossings – # of edges signals on two ends differ in signs

Quantifying oscillations - Total variations

Classical total variations – sum of squared differences in consecutive signal samples

$$TV(\mathbf{x}) = \sum_{n} (x_n - x_{n-1})^2$$

Graph total variations – sum of squared differences between signals on two ends of edges multiplied by the corresponding edge weights

 \Rightarrow Also known as Laplacian quadratic form

- ► The Laplacian eigenvalues can be interpreted as frequencies
- ► Larger eigenvalues ⇒ Higher frequencies
- The eigenvectors associated with large eigenvalues oscillate rapidly ⇒ Dissimilar values on vertices connected by edges with high weight
- ► The eigenvectors associated with small eigenvalues vary slowly
 - \Rightarrow Similar values on vertices connected by edges with high weight
- Eigenvector associated with eigenvalue 0 is constant

 \Rightarrow for connected graph

Three graph Laplacian eigenvectors for the gene networks

Graph Signals

Graph Laplacian

Graph Fourier Transform (GFT)

Ordering of frequencies

Inverse graph Fourier transform (iGFT)

Graph Filters

Application: Gene Network

Information sciences at ESE

- Recall the graph Fourier transform x
 - \Rightarrow of any signal $\mathbf{x} \in \mathbb{R}^N$ on the vertices of graph G
 - \Rightarrow is the expansion of ${\bf x}$ of the eigenvectors of the Laplacian

$$\tilde{\mathbf{x}}(\mathbf{k}) = \langle \mathbf{x}, \mathbf{v}_{\mathbf{k}} \rangle = \sum_{n=1}^{N} x(n) v_{\mathbf{k}}^{*}(n)$$

- ► In matrix form, $\tilde{\mathbf{x}} = \mathbf{V}^H \mathbf{x}$
- ► The inverse graph Fourier transform is

$$\mathbf{x}(n) = \sum_{k=0}^{N-1} \tilde{\mathbf{x}}(k) v_k(n)$$

ln matrix form, $\mathbf{x} = \mathbf{V}\tilde{\mathbf{x}}$

▶ Recap in proving theorems we have monkey steps and one smart step ⇒ That was orthonormality ⇒ V^H is Hermitian ⇒ $VV^H = I$

Theorem

The inverse graph Fourier transform (iGFT) is, indeed, the inverse of the GFT.

Proof.

▶ Write $\mathbf{x} = \mathbf{V}\tilde{\mathbf{x}}$ and $\tilde{\mathbf{x}} = \mathbf{V}^{H}\mathbf{x}$ and exploit fact that \mathbf{V} is Hermitian

$$\mathbf{x} = \mathbf{V}\tilde{\mathbf{x}} = \mathbf{V}\mathbf{V}^{H}\mathbf{x} = \mathbf{I}\mathbf{x} = \mathbf{x}$$

This is the last inverse theorem we will see...

Theorem

The GFT preserves energy $\,\Rightarrow\, \|\bm{x}\|^2 = \bm{x}^H \bm{x} = \tilde{\bm{x}}^H \tilde{\bm{x}} = \|\tilde{\bm{x}}\|^2$

Proof.

► Use GFT to write $\tilde{\mathbf{x}} = \mathbf{V}^H \mathbf{x}$ and the fact that \mathbf{V} is Hermitian $\|\tilde{\mathbf{x}}\|^2 = \tilde{\mathbf{x}}^H \tilde{\mathbf{x}} = (\mathbf{V}^H \mathbf{x})^H \mathbf{V}^H \mathbf{x} = \mathbf{x}^H \mathbf{V} \mathbf{V}^H \mathbf{x} = \mathbf{x}^H \mathbf{x} = \|\mathbf{x}\|^2$

This is the last energy conservation theorem we will see...

Graph signal representations in two domains

Graph signals can be equivalently represented in two domains
 The vertex domain and the graph spectral domain

Sample patient 1 with subtype 2

Spectral representation for patient 2 with subtype 1

Spectral representation for patient 1 with subtype 2

Graph Signals

Graph Laplacian

Graph Fourier Transform (GFT)

Ordering of frequencies

Inverse graph Fourier transform (iGFT)

Graph Filters

Application: Gene Network

Information sciences at ESE

- A graph filter $f : \mathbb{R}^N \to \mathbb{R}^N$ is a map between graph signals
 - \Rightarrow Given a graph signal $\mathbf{x} \in \mathbb{R}^N$, its filtered version is $\mathbf{y} = \mathbf{f}(\mathbf{x})$
- We will focus on filters f that are linear and shift-invariant
- ► A linear filter *f* is one that satisfies

$$\mathbf{y}_1 = \mathbf{f}(\mathbf{x}_1), \quad \mathbf{y}_2 = \mathbf{f}(\mathbf{x}_2) \implies \alpha_1 \mathbf{y}_1 + \alpha_2 \mathbf{y}_2 = \mathbf{f}(\alpha_1 \mathbf{x}_1 + \alpha_2 \mathbf{x}_2)$$

A shift-invariant filter f satisfies

$$f(\mathbf{S}\mathbf{x}) = \mathbf{S}f(\mathbf{x})$$

where \mathbf{S} is the graph-shift operator of the graph where \mathbf{x} is defined

Shift-invariance is the graph analog of time invariance in classical SP

- Given a graph G and a graph-shift operator $\mathbf{S} \in \mathbb{R}^{N \times N}$ on G
- ► We define the graph filter **H** as

$$\mathbf{H} := h_0 \mathbf{S}^0 + h_1 \mathbf{S}^1 + h_2 \mathbf{S}^2 + \ldots = \sum_{\ell=0}^{L} h_\ell \mathbf{S}^\ell$$

- ► **H** is a polynomial on the graph-shift operator **S** with coefficients h_i \Rightarrow *L* is the degree of the filter
- ► Filter **H** acts on a graph signal $\mathbf{x} \in \mathbb{R}^N$ to generate $\mathbf{y} = \mathbf{H}\mathbf{x}$ ⇒ If we define $\mathbf{x}^{(\ell)} := \mathbf{S}^{\ell}\mathbf{x} = \mathbf{S}\mathbf{x}^{(\ell-1)}$

$$\mathbf{y} = \sum_{\ell=0}^L h_\ell \mathbf{x}^{(\ell)}$$

Why is H defined as a polynomial on S?

Proposition

The graph filter $\mathbf{H} = \sum_{\ell=0}^{L} h_{\ell} \mathbf{S}^{\ell}$ is linear and shift-invariant. Proof.

Since H is a matrix, linearity is trivial

$$\mathbf{y}_1 = \mathbf{H}\mathbf{x}_1, \quad \mathbf{y}_2 = \mathbf{H}\mathbf{x}_2 \implies \alpha_1\mathbf{y}_1 + \alpha_2\mathbf{y}_2 = \mathbf{H}(\alpha_1\mathbf{x}_1 + \alpha_2\mathbf{x}_2)$$

For shift-invariance, note that S commutes with Sⁱ for all i

$$\mathbf{H}(\mathbf{S}\mathbf{x}) = \left(\sum_{\ell=0}^{L} h_{\ell} \mathbf{S}^{\ell}\right) \mathbf{S}\mathbf{x} = \mathbf{S}\left(\sum_{\ell=0}^{L} h_{\ell} \mathbf{S}^{\ell}\right) \mathbf{x} = \mathbf{S}(\mathbf{H}\mathbf{x})$$

In fact, no other formulation of ${\rm H}$ is linear and shift-invariant \Rightarrow We will not show this

Consider the particular case where S = A_{dc}
 Adjacency matrix of a directed cycle

Focus on a signal x defined on a cyclic graph with 6 nodes

• Consider the output signal y = Hx

$$\mathbf{y} = h_0 \mathbf{x} + h_1 \mathbf{S}^1 \mathbf{x} + h_2 \mathbf{S}^2 \mathbf{x} + h_3 \mathbf{S}^3 \mathbf{x} + h_4 \mathbf{S}^4 \mathbf{x} + h_5 \mathbf{S}^5 \mathbf{x}$$

Let's focus on the first component of signal y

$$y_1 = h_0 [\mathbf{S}^0 \mathbf{x}]_1 + h_1 [\mathbf{S}^1 \mathbf{x}]_1 + h_2 [\mathbf{S}^2 \mathbf{x}]_1 + h_3 [\mathbf{S}^3 \mathbf{x}]_1 + h_4 [\mathbf{S}^4 \mathbf{x}]_1 + h_5 [\mathbf{S}^5 \mathbf{x}]_1$$

= $h_0 x_1 + h_1 x_6 + h_2 x_5 + h_3 x_4 + h_4 x_3 + h_5 x_2$

ln general, for element y_n of y, exploiting the fact that x is cyclic

$$y_n = \sum_{l=0}^{N-1} h_l x_{n-l}$$

• Defining $\mathbf{h} := [h_0, h_1, \dots, h_5]^T$ we may write

 $\mathbf{y} = \mathbf{h} * \mathbf{x}$

Thus, for the particular case where S = A_{dc}
 ⇒ h recovers the impulse response of the filter

• Recalling that $\mathbf{S} = \mathbf{V} \wedge \mathbf{V}^H$, we may write

$$\mathbf{H} = \sum_{\ell=0}^{L} h_{\ell} \mathbf{S}^{\ell} = \mathbf{V} \left(\sum_{\ell=0}^{L} h_{\ell} \Lambda^{\ell} \right) \mathbf{V}^{H}$$

- ► The application **H**x of filter **H** to x can be split into three parts ⇒ **V**^{*H*} takes signal x to the graph frequency domain $\tilde{\mathbf{x}}$ ⇒ $\hat{\mathbf{H}} := \sum_{\ell=0}^{L} h_{\ell} \wedge^{\ell}$ modifies the frequency coefficients to obtain $\tilde{\mathbf{y}}$ ⇒ **V** brings the signal $\tilde{\mathbf{y}}$ back to the graph domain y
- Since Ĥ is diagonal, define Ĥ =: diag(ĥ)
 ⇒ ĥ is the frequency response of the filter H
 ⇒ Output at frequency i depends only on input at frequency i

$$\tilde{y}_i = \widehat{h}_i \tilde{x}_i$$

Frequency response and filter coefficients

► In order to design a graph with a particular frequency response $\hat{\mathbf{h}}$ \Rightarrow Need to know the relation between $\hat{\mathbf{h}}$ and the filter coefficients \mathbf{h}

• Define the matrix
$$\Psi := \begin{pmatrix} 1 & \lambda_1 & \dots & \lambda_1^{L-1} \\ \vdots & \vdots & & \vdots \\ 1 & \lambda_N & \dots & \lambda_N^{L-1} \end{pmatrix}$$

Proposition

The frequency response $\hat{\mathbf{h}}$ of a graph filter with coefficients \mathbf{h} is given by

 $\widehat{\mathbf{h}} = \Psi \mathbf{h}$

Proof.

- Since $\hat{\mathbf{h}} := \operatorname{diag}(\sum_{\ell=0}^{L} h_{\ell} \wedge^{\ell})$ we have that $\hat{h}_{i} = \sum_{\ell=0}^{L} h_{\ell} \lambda_{i}^{\ell}$
- Defining $\lambda_i = [\lambda_i^0, \lambda_i^1, \dots, \lambda_i^{L-1}]^T$ we have that $\hat{h}_i = \lambda_i^T \mathbf{h}$
- Stacking the values for all \hat{h}_i , the result follows

Graph filter design

• Given the desired frequency response $\hat{\mathbf{h}}$ of the graph filter \Rightarrow We can find the graph coefficients \mathbf{h} as

$$\mathbf{h} = \mathbf{\Psi}^{-1} \widehat{\mathbf{h}}$$

- ► Since **Ψ** is Vandermonde
 - \Rightarrow Ψ is invertible as long as $\lambda_i \neq \lambda_j$ for $i \neq j$
- ▶ For the particular case when $S = A_{dc}$, we have that $\lambda_i = e^{-j\frac{2\pi}{N}(i-1)}$

$$\Psi = \begin{pmatrix} 1 & 1 & \dots & 1 \\ 1 & e^{-j\frac{2\pi(1)(1)}{N}} & \dots & e^{-j\frac{2\pi(1)(N-1)}{N}} \\ \vdots & \vdots & & \vdots \\ 1 & e^{-j\frac{2\pi(N-1)(1)}{N}} & \dots & e^{-j\frac{2\pi(N-1)(N01)}{N}} \end{pmatrix} = \mathsf{F}$$

 \Rightarrow The frequency response is the DFT of the impulse response

$$\widehat{\mathbf{h}} = \mathbf{F}\mathbf{h}$$

Graph Signals

Graph Laplacian

Graph Fourier Transform (GFT)

Ordering of frequencies

Inverse graph Fourier transform (iGFT)

Graph Filters

Application: Gene Network

Information sciences at ESE

- Patients diagnosed with same disease exhibit different behaviors
- Each patient has a genetic profile describing gene mutations
- Would be beneficial to infer phenotypes from genotypes
 - \Rightarrow Targeted treatments, more suitable suggestions, etc.
- Traditional approaches consider different genes to be independent
 Not so ideal, as different genes may affect same metabolism
- Alternatively, consider genetic network
 - \Rightarrow Genetic profiles becomes graph signals on genetic network
 - \Rightarrow We will see how this consideration improves subtype classification

Genetic network

- Undirected and unweighted graph with 2458 nodes
 - ⇒ Describes gene-to-gene interactions
- Each node represents a gene in human DNA related to breast cancer
- An edge between two genes represents interaction
 - \Rightarrow Proteins encoded participate in the same metabolism process
- Adjacency matrix of the gene network

Genetic profiles

- Genetic profile of 240 women with breast cancer
 ⇒ 44 with serous subtype and 196 with endometrioid subtype
 ⇒ Patient *i* has an associated profile x_i ∈ {0,1}²⁴⁵⁸
- Mutations are very varied across patients
 - \Rightarrow Some patients present a lot of mutations
 - \Rightarrow Some genes are consistently mutated across patients

Can we use the genetic profile to classify patients across subtypes?

• Quantify the distance between genetic profiles $\Rightarrow d(i, j) = ||\mathbf{x}_i - \mathbf{x}_i||_2$

Given a patient *i* to classify, all other patients' subtypes are known
 Find the *k* most similar profiles, i.e. *j* such that *d(i,j)* is minimized
 Assign to *i* the most common subtype among these *k* neighbors

- Compare estimated with real subtype y for all patients
- We obtain the following error rates

 $k = 3 \Rightarrow 13.3\%$, $k = 5 \Rightarrow 12.9\%$, $k = 7 \Rightarrow 14.6\%$

Can we do any better using graph signal processing?

Each genetic profile **x**_i can be seen as a graph signal

- \Rightarrow On the genetic network
- We can look at the frequency components $\tilde{\mathbf{x}}_i$ using the GFT
 - \Rightarrow Use as shift operator \boldsymbol{S} the Laplacian of the genetic network

Example of signal \mathbf{x}_i

Distinguishing Power

• Define the distinguishing power of frequency \mathbf{v}_k as

$$DP(\mathbf{v}_{k}) = \left| \frac{\sum_{i:y_{i}=1} \tilde{\mathbf{x}}_{i}(k)}{\sum_{i} \mathbf{1} \{y_{i}=1\}} - \frac{\sum_{i:y_{i}=2} \tilde{\mathbf{x}}_{i}(k)}{\sum_{i} \mathbf{1} \{y_{i}=2\}} \right| / \sum_{i} |\tilde{\mathbf{x}}_{i}(k)|,$$

Normalized difference between the mean GFT coefficient for v_k ⇒ Among patients with serous and endometrioid subtypes
 Distinguishing power is not equal across frequencies

The distribution of discriminating power

Most frequencies have weak distinguishing power

 \Rightarrow A few frequencies have strong differentiating power

- \Rightarrow The most powerful frequency outperforms others significantly
- The distinguishing power defined is one of many proper heuristics

Increasing accuracy via graph filters

- Keeps only information in the most distinguishable frequency
- For the genetic profile \mathbf{x}_i with its frequency representation $\tilde{\mathbf{x}}_i$
- Multiply $\tilde{\mathbf{x}}_i$ with graph filter H_1 having the frequency response

$$H_1(k) = egin{cases} 1, & ext{if } k = ext{argmax}_k \ egin{matrix} DP(\mathbf{v}_k); \ 0, & ext{otherwise}. \end{cases}$$

• Then perform inverse GFT to get the filtered graph signals $\hat{\mathbf{x}}_i$

Increasing accuracy via another graph filters

- Keeps information in frequencies with higher distinguishing power
- Multiply $\tilde{\mathbf{x}}_i$ with graph filter H_p having the frequency response

 $H_p(k) = \begin{cases} 1, & \text{if } DP(\mathbf{v}_k) \ge p \text{-th percentile of the distribution of } DP; \\ 0, & \text{otherwise,} \end{cases}$

Graph Signals

Graph Laplacian

Graph Fourier Transform (GFT)

Ordering of frequencies

Inverse graph Fourier transform (iGFT)

Graph Filters

Application: Gene Network

Information sciences at ESE

- Transforms, PCA mostly, are the brain of data analysis
 But you still need a heart.
- Transforms concentrates information in a space of lower dimensionality
 ⇒ But you still have to extract that information
 ⇒ We did that with minimal sophistication (nearest neighbors)
- ► If you think you want to learn more about this, follow the DS sequence ⇒ ESE224: Signal and Information Processing
 - \Rightarrow ESE305: Foundations of Data Science (V. Preciado)
 - \Rightarrow ESE545: Data Mining: Learning From Massive Datasets (H. Hassani)
- Penn is also starting a masters of data science. Consider sub-matriculating

- ► To follow up on what we did on the first half of the course you can ...
 - \Rightarrow Follow up literally by digging deeper intro signal processing
 - \Rightarrow Follow up philosophically by studying systems
- Signal Processing sequence
 - ⇒ ESE224: Signal and Information Processing
 - \Rightarrow ESE325: Fourier Analysis and Applications
 - \Rightarrow ESE531: Digital Signal Processing
- Systems analysis and design
 - \Rightarrow ESE210: Introduction to Dynamic Systems (R. Ghrist)
 - ⇒ ESE224: Signal and Information Processing
 - \Rightarrow ESE303: Stochastic Systems Analysis and Simulation

- Once you have information you may want to something with it
- Controlling the state of a system
 - \Rightarrow ESE406: Control of Systems
 - \Rightarrow ESE500: Linear Systems Theory
- Making decisions that are good in some sense (optimal)
 - \Rightarrow ESE204: Decision Models
 - \Rightarrow ESE304: Optimization of Systems
 - \Rightarrow ESE504: Introduction to Optimization Theory
 - \Rightarrow ESE605: Modern Convex Optimization

At some point, you want to use what you've learned to do something
 ⇒ ESE290: Introduction to ESE Research Methodology
 ⇒ ESE350: Embedded Systems/Microcontroller Laboratory

- ▶ It has been my pleasure. I am very happy abut how things turned out
- If you need my help at some point in the next 30 years, let me know
- I will be retired after that