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The support of one dimensional signals

I We have studied one-dimensional signals, image processing, PCA

I It is time to understand them in a more unified way

I Consider the support of one-dimensional signals

I There is an underlying graph structure

⇒ Each node represents discrete time instants (e.g. hours in a day)

⇒ Edges are unweighted and directed
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The support of images

I Similarly, images also have an underlying graph structure

I Each node represents a single pixel

I Edges denote neighborhoods of pixels

⇒ Unweighted and undirected
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PCA uses another underlying graph

I The previous underlying graph assumes a structure between pixels
(neighbors in lattice) a priori of seeing the images

I PCA considers images as defined on a different graph

I Each node represents a single pixel

I Edges denote covariance between pairs of pixels in the realizations

⇒ A posteriori after seeing the images

⇒ Undirected and weighted, including self loops
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Graphs

I Formally, a graph (or a network) is a triplet (V, E ,W )

I V = {1, 2, . . . ,N} is a finite set of N nodes or vertices

I E ⊆ V × V is a set of edges defined as order pairs (n,m)

⇒ Write N (n) = {m ∈ V : (m, n) ∈ E} as the in-neighbors of n

I W : E → R is a map from the set of edges to scalar values, wnm

⇒ Represents the level of relationship from n to m

⇒ Unweighted graphs ⇒ wnm ∈ {0, 1}, for all (n,m) ∈ E
⇒ Undirected graphs ⇒ (n,m) ∈ E if and only if (m, n) ∈ E and

wnm = wmn, for all (n,m) ∈ E
⇒ In-neighbors are neighbors

⇒ More often weights are strictly positive, W : E → R++
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Graphs – examples

0 1 2 3 · · · 23

I Unweighted and directed graphs

⇒ V = {0, 1, . . . , 23}
⇒ E = {(0, 1), (1, 2), . . . , (22, 23), (23, 0)}
⇒ W : (n,m) 7→ 1, for all (n,m) ∈ E

I Unweighted and undirected graphs

⇒ V = {1, 2, 3, . . . , 9}
⇒ E = {(1, 2), (2, 3), . . . , (8, 9), (1, 4), . . . , (6, 9)}
⇒ W : (n,m) 7→ 1, for all (n,m) ∈ E
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I Weighted and undirected graphs

⇒ V = {p1, p2, p3, p4}
⇒ E = {(p1, p1), (p1, p2), . . . , (p4, p4)} = V × V
⇒ W : (n,m) 7→ Σnm = Σmn, for all (n,m)
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Adjacency matrices

I Given a graph G = (V, E ,W ) of N vertices,

I Its adjacency matrix A ∈ RN×N is defined as

Anm =

{
wnm, if(n,m) ∈ E
0, otherwise

I A matrix representation incorporating all information about G

⇒ For unweighted graphs, positive entries represent connected pairs

⇒ For weighted graphs, also denote proximities between pairs

I Inherently defines an ordering of vertices

⇒ same ordering as in graph signals that we will see soon
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Adjacency matrices – examples

0 1 2 3 · · · 23
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I Different ordering
will yield different A

1 1

1 1
. . .

1

1
. . .

. . .
. . .
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Graph signals

I Graph signals are mappings x : V → R
I Defined on the vertices of the graph

I May be represented as a vector x ∈ RN

I xn represents the signal value at the nth vertex in V
I Inherently utilizes an ordering of vertices

⇒ same ordering as in adjacency matrices
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Graphs – Gene networks

I Graphs representing gene-gene interactions

⇒ Each node denotes a single gene (loosely speaking)

⇒ Connected if their coded proteins participate in same metobolism

A sample network
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Graph signals – Genetic profiles

I Genetic profiles for each patient can be considered as a graph signal

⇒ Signal on each node is 1 if mutated and 0 otherwise

Sample patient 1 with subtype 1
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Plans

I We are going to derive following concepts for graph signal processing

⇒ Total variations

⇒ Frequency

⇒ the notion of high or low frequency will be less obvious

⇒ DFT and iDFT for graph signals

⇒ Graph filtering

I And apply graph signal processing to gene mutation dataset
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Degree of a node

I The degree of a node is the sum of the weights of its incident edges

I Given a weighted and undirected graph G = (V, E ,W )

I The degree of node i , deg(i) is defined as deg(i) =
∑

j∈N (i) wi j

⇒ where N (i) is the neighborhood of node i

I Equivalently, in terms of the adjacency matrix A

⇒ deg(i) =
∑

j Ai j =
∑

j Aj i

I The degree matrix D ∈ RN×N is a diagonal matrix s.t. D ii = deg(i)

I In directed graphs, each node has an out-degree and an in-degree

⇒ Weights in outgoing and incoming edges need not coincide
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Laplacian of a graph

I Given a graph G with adjacency matrix A and degree matrix D

I We define the Laplacian matrix L ∈ RN×N as

L = D− A

I Equivalently, L can be defined element-wise as

Li j =


deg(i) =

∑
j∈N (i) wij if i = j

−wi j if j ∈ Ni

0 otherwise

I We assume undirected G ⇒ deg(i) is well-defined

I The normalized Laplacian can be obtained as L = D−1/2LD−1/2

⇒ We will mainly focus on the unnormalized version
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An example of a graph Laplacian

I Consider the weighted and undirected graph and its Laplacian
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0 −3 4 −1
−2 −2 −1 5



I Diagonal elements are strictly positive since no node is isolated

⇒ Every node has a non-zero degree

I Off-diagonal elements are non-positive
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Multiplication by the Laplacian

I Consider a graph G with Laplacian L and a graph signal x on G

I Signal y = Lx results from multiplying x with the Laplacian

I Component yi of y is (matrix product definition, separate j = i)

yi =
∑
j

Li jxj = Li ixi +
∑
j 6=i

Li jxj

I We know Li j = 0 when j /∈ Ni and Li j = −wi j when j ∈ Ni . Then

yi = Li ixi −
∑
j∈Ni

wi jxj

I We also know that Li i = deg(i) =
∑

j∈Ni
wi j . Therefore

yi =
∑
j∈Ni

wi jxi −
∑
j∈Ni

wi jxj =
∑
j∈Ni

wi j(xi − xj)

I Replaces xi by weighted average of difference with neighbors
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Graph signal diffusion

I Multiplying by the Laplcian yields ⇒ yi =
∑
j∈Ni

wi j(xi − xj)

I yi measures the difference between x at a node and its neighborhood

I We say the signal diffuses through the graph. Like heat diffuses

I Temperature at i is averaged with neighbor’s temperatures

I Further Laplacian multiplications continue diffusion process

⇒ L2x brings in energy from 2-hop neighborhood

⇒ L3x brings in energy from 3-hop neighborhood

⇒ . . . Lkx brings in energy from k-hop neighborhood
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Variability of the Laplacian quadratic form

I The Laplacian quadratic form of graph signal x is ⇒ xTLx

I Quadratic form is a number: row vector × matrix × column vector

Theorem
The Laplacian quadratic form of signal x = [x0, x1, . . . , xN ] is explicitly
given by

xTLx =
1

2

∑
i

∑
j∈Ni

wi j(xi − xj)
2 =

1

2

∑
(i,j)∈E

wi j(xi − xj)
2

I xTLx quantifies the local variation of signal x

⇒ signals can be ordered depending on how much they vary

⇒ will be important to order frequencies
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Proof of quadratic form variability

Proof.

I We already know the result of the product y = Lx. Components are:

yi =
∑
j∈Ni

wi j(xi − xj)

I Use explicit form of the product xTy =
∑
i

xiyi to write

xTy =
∑
i

xiyi =
∑
i

∑
j∈Ni

xiwi j(xi − xj)

I The term xiwi j(xi − xj) has a symmetric xjwj i (xj − xi ). Group them

xTy =
1

2

∑
i

xiwi j(xi − xj) + xjwj i (xj − xi )

I But the terms in the sum are now simply

xiwi j(xi − xj) + xjwj i (xj − xi ) = wi j(xi − xj)
2
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Eigenvalues and eigenvectors of the Laplacian

I Denote by λi and vi the eigenvalues and eigenvectors of L

I Since xTLx > 0 for x 6= 0, L is positive semi-definite

⇒ All eigenvalues are nonnegative, i.e. λi ≥ 0 for all i

I A constant vector 1 is an eigenvector of L with eigenvalue 0

[L1]i =
∑

j∈N (i)

wi j(1− 1) = 0

I Thus, λ1 = 0 and v1 = 1/N 1

⇒ In connected graphs λi > 0 for i = 2, . . . , n

⇒ Multiplicity of λ = 0 equals the nr. of connected components
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Graph-shift operator

I Given an arbitrary graph G = (V, E ,W )

I A graph-shift operator S ∈ RN×N of graph G ia a matrix satisfying

⇒ S i j = 0 for i 6= j and (i , j) 6∈ E

I S can take nonzero values in the edges of G or in its diagonal

I We have already seen some possible graph-shift operators

⇒ Adjacency A, Degree D and Laplacian L matrices

I We restrict our attention to normal shifts S = VΛVH

⇒ Columns of V = [v1v2 . . . vN ] correspond to the eigenvectors of S

⇒ Λ is a diagonal matrix containing the eigenvalues of S
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Graph Fourier Transform (GFT)

I Given a graph G and a graph signal x ∈ RN defined on G

⇒ Consider a normal graph-shift S = VΛVH

I The Graph Fourier Transform (GFT) of x is defined as

x̃(k) = 〈x, vk〉 =
N∑

n=1

x(n)v∗k(n)

I In matrix form, x̃ = VHx

I Given that the columns of V are the eigenvectors vi of S

⇒ x̃(k) = vH
k x is the inner product between vk and x

⇒ x̃(k) is how similar x is to vk

⇒ In particular, GFT ≡ DFT when VH = F, i.e. vk = ekN
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DFT and PCA as particular cases of GFT

0 1 2 3 · · · 23

I For the directed cycle graph, GFT ≡ DFT

⇒ if S = A or

⇒ if S = L for symmetrized graph

⇒ then VH = F

I For the covariance graph, GFT ≡ PCA

⇒ if S = A, then VH = PH
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Ordering of frequencies

I Recall in conventional DFT, the kth DFT component can be written

X (k) = 〈x, ekN〉 =
1√
N

N−1∑
n=0

x(n)e−j2πkn/N

I We say X (k) the component for higher frequency given higher k

⇒ There exists a natural ordering of frequencies

⇒ Higher k ⇒ higher oscillations
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Quantifying oscillations – Zero crossings

I We want to quantify the qualitative intuition of ‘high oscillations’
I Classical zero crossings – # of places signals change signs

ZC (x) =
∑
n

1 {xnxn−1 < 0}

I Graph zero crossings – # of edges signals on two ends differ in signs

ZCG (x) =
N∑

n=1

∑
m∈N (n)

1 {xnxm < 0}
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Quantifying oscillations – Total variations

I Classical total variations – sum of squared differences in consecutive
signal samples

TV (x) =
∑
n

(xn − xn−1)2

I Graph total variations – sum of squared differences between signals
on two ends of edges multiplied by the corresponding edge weights

⇒ Also known as Laplacian quadratic form

TVG (x) =
N∑

n=1

∑
m∈N (n)

(xn − xm)2 wmn = xTLx
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Graph frequencies

I The Laplacian eigenvalues can be interpreted as frequencies

I Larger eigenvalues ⇒ Higher frequencies

I The eigenvectors associated with large eigenvalues oscillate rapidly

⇒ Dissimilar values on vertices connected by edges with high weight

I The eigenvectors associated with small eigenvalues vary slowly

⇒ Similar values on vertices connected by edges with high weight

I Eigenvector associated with eigenvalue 0 is constant

⇒ for connected graph
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Graph frequencies – Gene networks

I Three graph Laplacian eigenvectors for the gene networks
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I ZCG (v0) = 0

I TVG (v0) = 0

I ZCG (v1) = 2

I TVG (v1) = 0.4

I ZCG (v1) = 20

I TVG (v1) = 8.0
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Inverse graph Fourier transform

I Recall the graph Fourier transform x

⇒ of any signal x ∈ RN on the vertices of graph G

⇒ is the expansion of x of the eigenvectors of the Laplacian

x̃(k) = 〈x, vk〉 =
N∑

n=1

x(n)v∗k (n)

I In matrix form, x̃ = VHx

I The inverse graph Fourier transform is

x(n) =
N−1∑
k=0

x̃(k)vk(n)

I In matrix form, x = Vx̃
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Inverse theorem, like a pro

I Recap in proving theorems we have monkey steps and one smart step

⇒ That was orthonormality ⇒ VH is Hermitian ⇒ VVH = I

Theorem
The inverse graph Fourier transform (iGFT) is, indeed, the inverse of the
GFT.

Proof.

I Write x = Vx̃ and x̃ = VHx and exploit fact that V is Hermitian

x = Vx̃ = VVHx = Ix = x

I This is the last inverse theorem we will see...

Signal and Information Processing Signal Processing on Graphs 35



Energy conservation (Parseval) theorem, like a pro

Theorem
The GFT preserves energy ⇒ ‖x‖2 = xHx = x̃H x̃ = ‖x̃‖2

Proof.

I Use GFT to write x̃ = VHx and the fact that V is Hermitian

‖x̃‖2 = x̃H x̃ =
(

VHx
)H

VHx = xHVVHx = xHx = ‖x‖2

I This is the last energy conservation theorem we will see...

Signal and Information Processing Signal Processing on Graphs 36



Graph signal representations in two domains

I Graph signals can be equivalently represented in two domains

⇒ The vertex domain and the graph spectral domain

Sample patient 2 with subtype 1
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Linearity and shift-invariance

I A graph filter f : RN → RN is a map between graph signals

⇒ Given a graph signal x ∈ RN , its filtered version is y = f (x)

I We will focus on filters f that are linear and shift-invariant

I A linear filter f is one that satisfies

y1 = f (x1), y2 = f (x2) =⇒ α1y1 + α2y2 = f (α1x1 + α2x2)

I A shift-invariant filter f satisfies

f (Sx) = Sf (x)

where S is the graph-shift operator of the graph where x is defined

I Shift-invariance is the graph analog of time invariance in classical SP
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Graph filters as matrix polynomials

I Given a graph G and a graph-shift operator S ∈ RN×N on G

I We define the graph filter H as

H := h0S0 + h1S1 + h2S2 + . . . =
L∑
`=0

h`S
`

I H is a polynomial on the graph-shift operator S with coefficients hi

⇒ L is the degree of the filter

I Filter H acts on a graph signal x ∈ RN to generate y = Hx

⇒ If we define x(`) := S`x = Sx(`−1)

y =
L∑
`=0

h`x
(`)

I Why is H defined as a polynomial on S?
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Matrix polynomials are linear and shift-invariant

Proposition

The graph filter H =
∑L
`=0 h`S

` is linear and shift-invariant.

Proof.

I Since H is a matrix, linearity is trivial

y1 = Hx1, y2 = Hx2 =⇒ α1y1 + α2y2 = H(α1x1 + α2x2)

I For shift-invariance, note that S commutes with Si for all i

H(Sx) =

(
L∑
`=0

h`S
`

)
Sx = S

(
L∑
`=0

h`S
`

)
x = S(Hx)

In fact, no other formulation of H is linear and shift-invariant
⇒ We will not show this
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Connection with filters of time-varying signals

0 1 2 3 · · · 23 I Consider the particular case where S = Adc

⇒ Adjacency matrix of a directed cycle

I Focus on a signal x defined on a cyclic graph with 6 nodes
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I Consider the output signal y = Hx

y = h0x + h1S1x + h2S2x + h3S3x + h4S4x + h5S5x
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Connection with filters of time-varying signals

I Let’s focus on the first component of signal y

y1 = h0[S0x]1 + h1[S1x]1 + h2[S2x]1 + h3[S3x]1 + h4[S4x]1 + h5[S5x]1

= h0x1 + h1x6 + h2x5 + h3x4 + h4x3 + h5x2

I In general, for element yn of y, exploiting the fact that x is cyclic

yn =
N−1∑
l=0

hlxn−l

I Defining h := [h0, h1, . . . , h5]T we may write

y = h ∗ x

I Thus, for the particular case where S = Adc

⇒ h recovers the impulse response of the filter
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Frequency response of a graph filter

I Recalling that S = VΛVH , we may write

H =
L∑
`=0

h`S
` = V

(
L∑
`=0

h`Λ
`

)
VH

I The application Hx of filter H to x can be split into three parts

⇒ VH takes signal x to the graph frequency domain x̃

⇒ Ĥ :=
∑L
`=0 h`Λ

` modifies the frequency coefficients to obtain ỹ

⇒ V brings the signal ỹ back to the graph domain y

I Since Ĥ is diagonal, define Ĥ =: diag(ĥ)

⇒ ĥ is the frequency response of the filter H

⇒ Output at frequency i depends only on input at frequency i

ỹi = ĥi x̃i
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Frequency response and filter coefficients

I In order to design a graph with a particular frequency response ĥ

⇒ Need to know the relation between ĥ and the filter coefficients h

I Define the matrix Ψ :=

 1 λ1 . . . λL−1
1

...
...

...

1 λN . . . λL−1
N


Proposition

The frequency response ĥ of a graph filter with coefficients h is given by

ĥ = Ψh

Proof.

I Since ĥ := diag(
∑L
`=0 h`Λ

`) we have that ĥi =
∑L
`=0 h`λ

`
i

I Defining λi = [λ0
i , λ

1
i , . . . , λ

L−1
i ]T we have that ĥi = λT

i h

I Stacking the values for all ĥi , the result follows
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Graph filter design

I Given the desired frequency response ĥ of the graph filter

⇒ We can find the graph coefficients h as

h = Ψ−1ĥ

I Since Ψ is Vandermonde

⇒ Ψ is invertible as long as λi 6= λj for i 6= j

I For the particular case when S = Adc , we have that λi = e−j
2π
N (i−1)

Ψ =


1 1 . . . 1

1 e−j
2π(1)(1)

N . . . e−j
2π(1)(N−1)

N

...
...

...

1 e−j
2π(N−1)(1)

N . . . e−j
2π(N−1)(N01)

N

 = F

⇒ The frequency response is the DFT of the impulse response

ĥ = Fh
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Graph Fourier Transform (GFT)

Ordering of frequencies

Inverse graph Fourier transform (iGFT)

Graph Filters

Application: Gene Network

Information sciences at ESE
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Motivation

I Patients diagnosed with same disease exhibit different behaviors

I Each patient has a genetic profile describing gene mutations

I Would be beneficial to infer phenotypes from genotypes

⇒ Targeted treatments, more suitable suggestions, etc.

I Traditional approaches consider different genes to be independent

⇒ Not so ideal, as different genes may affect same metabolism

I Alternatively, consider genetic network

⇒ Genetic profiles becomes graph signals on genetic network

⇒ We will see how this consideration improves subtype classification
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Genetic network

I Undirected and unweighted graph with 2458 nodes

⇒ Describes gene-to-gene interactions
I Each node represents a gene in human DNA related to breast cancer
I An edge between two genes represents interaction

⇒ Proteins encoded participate in the same metabolism process

I Adjacency matrix of the gene network
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Genetic profiles

I Genetic profile of 240 women with breast cancer

⇒ 44 with serous subtype and 196 with endometrioid subtype

⇒ Patient i has an associated profile xi ∈ {0, 1}2458

I Mutations are very varied across patients

⇒ Some patients present a lot of mutations

⇒ Some genes are consistently mutated across patients

I Can we use the genetic profile to classify patients across subtypes?
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k-nearest neighbor classification

I Quantify the distance between genetic profiles

⇒ d(i , j) = ‖xi − xj‖2

I Given a patient i to classify, all other patients’ subtypes are known

I Find the k most similar profiles, i.e. j such that d(i , j) is minimized

⇒ Assign to i the most common subtype among these k neighbors

I Compare estimated with real subtype y for all patients

I We obtain the following error rates

k = 3⇒ 13.3%, k = 5⇒ 12.9%, k = 7⇒ 14.6%

I Can we do any better using graph signal processing?
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Genetic profile as a graph signal

I Each genetic profile xi can be seen as a graph signal

⇒ On the genetic network

I We can look at the frequency components x̃i using the GFT

⇒ Use as shift operator S the Laplacian of the genetic network

Example of signal xi
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Distinguishing Power

I Define the distinguishing power of frequency vk as

DP(vk) =

∣∣∣∣
∑

i :yi=1 x̃i (k)∑
i 1 {yi = 1}

−
∑

i :yi=2 x̃i (k)∑
i 1 {yi = 2}

∣∣∣∣ /∑
i

|x̃i (k)| ,

I Normalized difference between the mean GFT coefficient for vk
⇒ Among patients with serous and endometrioid subtypes

I Distinguishing power is not equal across frequencies

Frequency
0 500 1000 1500 2000 2500

D
is

tin
gu

is
hi

ng
 P

ow
er

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Signal and Information Processing Signal Processing on Graphs 53



Distribution of distinguishing powers

I The distribution of discriminating power

0 1 2 3 4 5 6 7 8 9 10

x 10
−3

1

distingushing power

I Most frequencies have weak distinguishing power

⇒ A few frequencies have strong differentiating power

⇒ The most powerful frequency outperforms others siginificantly

I The distinguishing power defined is one of many proper heuristics
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Increasing accuracy via graph filters

I Keeps only information in the most distinguishable frequency

I For the genetic profile xi with its frequency representation x̃i
I Multiply x̃i with graph filter H1 having the frequency response

H1(k) =

{
1, if k = argmaxk DP(vk);

0, otherwise.

I Then perform inverse GFT to get the filtered graph signals x̂i
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Increasing accuracy via another graph filters

I Keeps information in frequencies with higher distinguishing power
I Multiply x̃i with graph filter Hp having the frequency response

Hp(k) =

{
1, if DP(vk) ≥ p-th percentile of the distribution of DP;

0, otherwise,
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Information sciences at ESE

Graph Signals

Graph Laplacian

Graph Fourier Transform (GFT)

Ordering of frequencies

Inverse graph Fourier transform (iGFT)

Graph Filters

Application: Gene Network

Information sciences at ESE
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Data Sciences (DS) Sequence

I Transforms, PCA mostly, are the brain of data analysis

⇒ But you still need a heart.

I Transforms concentrates information in a space of lower dimensionality

⇒ But you still have to extract that information

⇒ We did that with minimal sophistication (nearest neighbors)

I If you think you want to learn more about this, follow the DS sequence

⇒ ESE224: Signal and Information Processing

⇒ ESE305: Foundations of Data Science (V. Preciado)

⇒ ESE545: Data Mining: Learning From Massive Datasets (H. Hassani)

I Penn is also starting a masters of data science. Consider sub-matriculating
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The systems and signal processing sequences

I To follow up on what we did on the first half of the course you can ...

⇒ Follow up literally by digging deeper intro signal processing

⇒ Follow up philosophically by studying systems

I Signal Processing sequence

⇒ ESE224: Signal and Information Processing

⇒ ESE325: Fourier Analysis and Applications

⇒ ESE531: Digital Signal Processing

I Systems analysis and design

⇒ ESE210: Introduction to Dynamic Systems (R. Ghrist)

⇒ ESE224: Signal and Information Processing

⇒ ESE303: Stochastic Systems Analysis and Simulation
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Controls and Optimization sequences

I Once you have information you may want to something with it

I Controlling the state of a system

⇒ ESE406: Control of Systems

⇒ ESE500: Linear Systems Theory

I Making decisions that are good in some sense (optimal)

⇒ ESE204: Decision Models

⇒ ESE304: Optimization of Systems

⇒ ESE504: Introduction to Optimization Theory

⇒ ESE605: Modern Convex Optimization
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Even more courses to consider

I At some point, you want to use what you’ve learned to do something

⇒ ESE290: Introduction to ESE Research Methodology

⇒ ESE350: Embedded Systems/Microcontroller Laboratory
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Thanks

I It has been my pleasure. I am very happy abut how things turned out

I If you need my help at some point in the next 30 years, let me know

I I will be retired after that
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