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Chapter 1

Principal Component Analysis

1.1 The DFT and iDFT as Hermitian Matrices

We have seen thus far in the course that the DFT is a hugely useful tool to us in a variety
of applications. Recall the definition of the DFT:

X(k) =
1√
N

N−1

∑
n=0

x(n)e−j2πkn/N (1.1)

Recall that this can also be written as an inner product of a signal x with a complex
exponential ekn:

X(k) = 〈x, ekN〉 (1.2)

This conceptualization of the DFT has been extremely useful so far in frequency anal-
ysis and image processing. However, from a broader perspective, this is still ”beginner”
mode. Armed with our knowledge of signal processing, we are ready to switch to ”ad-
vanced” mode.

What, exactly, is ”advanced” mode? Well, in a word, linear algebra. (Two words,
actually). We know that linear algebra is a well-established branch of mathematics with a
myriad of profound and insightful theorems and results that make complicated applied
mathematics much simpler. Now, if only there were a way to write this DFT formula
above as a matrix, so that we could apply the powerful mathematics of linear algebra...

As you may have guessed by now, there is. How is this done? Well, let’s write out our
signal x and our complex exponential ekn as vectors.

x =


x(0)
x(1)
...
x(N − 1)

 ekN =
1√
N


ej2πk0/N

ej2πk1/N

...
ej2πk(N−1)/N

 (1.3)

It’s easy to see that the kth component of X(k) (the DFT of x) can be written as the kth
element of x times the kth element of ekn. From here you should start to see how this will
come together to form another representation of the DFT.
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4 CHAPTER 1. PRINCIPAL COMPONENT ANALYSIS

Let’s take a break and introduce a bit of notation. We will introduce a matrix opera-
tor, the Hermitian, denoted by an uppercase H. The Hermitian of a matrix is simply its
conjugate transpose. That is, AH = (A∗)T , where ∗ and T denote the conjugate and trans-
pose operations, respectively. You should be familiar with these operations from prior
mathematics coursework.

With this new notation, we can see that

〈x, ekN〉 = eH
kNx = X(k) (1.4)

Thus, the kth DFT component can be written as a matrix (in this case, vector) multi-
plication! Now let’s try to do the whole thing in one step. We can ”stack” N complex
exponentials into a matrix and vary their components as we go across and down the rows
and columns of a single matrix to form a matrix that performs the entire DFT operation
in one simple multiplication. Let’s see what this looks like. Note that we are defining the
DFT matrix as a Hermitian in the beginning, but we will see why we do this later.

FH =


eH

0N
eH

1N
...
eH
(N−1)N

 =
1√
N


1 1 · · · 1
1 e−j2π(1)(1)/N · · · e−j2π(1)(N−1)/N

...
...

. . .
...

1 e−j2π(N−1)(1)/N · · · e−j2π(N−1)(N−1)/N

 (1.5)

We can now write the entire DFT as a matrix multiplication, by multiplying this FH

matrix by our signal x. If you are having trouble visualizing this, examine the following
diagram:

1.1.1 Properties of the DFT Matrix

As we can see from the above matrix, the (k, n)th element of the DFT matrix FH is the
complex exponential with indices k and n.(

FH
)

kn
= e−j2π(k)(n)/N (1.6)

Note that by using properties of exponents to pull the exponential outside the paren-
theses, we can write the rows of this matrix as indexed powers. That is,

e−j2π(k)(n)/N =
(

e−j2π(k)/N
)(n)

(1.7)

We say that FH is Vandermonde. This is an interesting property, but will not be
discussed further in this course.

We can also note that this complex exponential can be written by reversing the indices.
That is, e−j2π(k)(n)/N = e−j2π(n)(k)/N due to commutativity of multiplication. Then, the
(k, n)th element of the DFT matrix is the same as the (n, k)th element of the DFT matrix.
This matrix, therefore is symmetric. That is, (FH)T = FH .

We can then write:

FH = (FH)T =
[

e∗0N e∗1N · · · e∗(N−1)N

]
(1.8)
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Similarly, conjugate transposing the matrix twice returns the original matrix, so:

(FH)H = F (1.9)

This should spark a notion of invertibility, one of the key properties of linear algebra.
We will get there soon. But first let’s note that we can write this matrix F as a matrix of
complex exponentials as follows.

F =


eT

0N
eT

1N
...
eT
(N−1)N

 (1.10)

In other words, F andFH are Hermitians of each other. That is, the nth row of F is the
nth complex exponential eT

nN , and the kth column of of FH is the kth conjugate complex
exponential e∗kN Again, we will see why this property is so important shortly.

1.1.2 The Product of F and its Hermitian

We are getting close to the key result that will allow us to abstract the process of signal
processing. We know that F and FH are related to each other via the conjugate transpose,
but our intuition would suggest that there exists a deeper relationship beyond this super-
ficial one. Our intuition is indeed correct. Let’s see what happens if we multiply FH by
F.

[
e∗0N · · · e∗kN · · · e∗(N−1)N

]


eT
0N

...
eT

kN
...
eT
(N−1)N





eT
0Ne∗0N · · · eT

0Ne∗kN · · · eT
0Ne∗(N−1)N

...
. . .

...
. . .

...
eT

kNe∗0N · · · eT
kNe∗kN · · · eT

kNe∗(N−1)N
...

. . .
...

. . .
...

eT
(N−1)Ne∗0N · · · eT

(N−1)Ne∗kN · · · eT
(N−1)Ne∗(N−1)N


= FHF

(1.11)

We can see that the (n, k)th element of the resulting matrix is eT
nNe∗kN . Let’s recall the

orthonormality of complex exponentials. That is,

eT
nNe∗kN = δ(n− k) (1.12)

By virtue of this amazing fact, all of the non-diagonal elements in the matrix go to
zero, and the diagonal elements go to 1! Our multiplication of a matrix by its Hermitian



6 CHAPTER 1. PRINCIPAL COMPONENT ANALYSIS

results in the identity matrix!

FHF =



1 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · 1 · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · 1

 = I (1.13)

This is precisely the definition of a matrix inverse! Therefore, the DFT matrix and
its Hermitian are inverses of each other. Essentially all of linear algebra rests on the
invertibility of matrices, so the importance of this fact should be starting to become clear.
However, this will not be true for all matrices - the DFT matrix is one example of a matrix
where this is the case. Under what circumstances, then, will a matrix’s Hermitian also
be its inverse? Well, we define a Hermitian matrix to be just that. That is, a matrix is
Hermitian if its Hermitian is also its inverse. In other words:

Theorem 1 A matrix A is Hermitian iff AHA = I = AAH

We see that this is true for the DFT matrix FH . That is:

Theorem 2 The DFT matrix F is Hermitian, since FHF = I = FFH

We have just shown this to be the case, so we will not repeat the proof.

1.1.3 Why Is This Important?

We have so far established that the DFT can be written as a matrix multiplication. So why
do we care? To put it simply, this turns something that was hard (sums and formulas)
into something that is easy (matrix multiplication). Because we have now moved from the
realm of ”signal processing” to linear algebra, there are well-established mathematics to
provide the foundation of what we do from here on out.

Next, we saw that the DFT matrix FH is Hermitian. That is, the conjugate transpose
of the DFT matrix is the inverse of the DFT matrix. This is a hugely useful fact. Why?
Because taking the inverse of a matrix is extremely computationally expensive, whereas
taking the conjugate transpose of a matrix is trivial. If I asked Alice to take the conjugate
transpose of a 10 x 10 matrix and I asked Bob to take the inverse of a 10 x 10 matrix, who
would finish first? Surely, it would be Alice. Furthermore, if the matrix that Alice and
Bob inverted were Hermitian, they would arrive at the same result, yet Alice would have
done a fraction of the work! This is why this representation of the DFT is so powerful.

Next, we will generalize even further. We will see that any Hermitian matrix can be
used as a transform to process signals, and we will find that certain matrices perform this
task better than others. This is the basis of principal component analysis. We will arrive
there shortly, but before we do, let’s briefly revisit the iDFT and see how linear algebra
makes this operation easier as well.
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1.1.4 The iDFT in Matrix Form

We can repeat everything we did to write the DFT in matrix form for the iDFT. For the
sake of concision, we will not do that here. However, recalling the definition of the iDFT,
we can write the formula in vector format as follows.

x̃(n) = eT
nNX =

1√
N

N−1

∑
k=0

X(k)ej2πkn/N (1.14)

We then proceed as before to write the iDFT as a matrix multiplication.

x̃ =


x̃(0)
x̃(1)
...
x̃(N − 1)

 =


eT

0NX
eT

1NX
...
eT
(N−1)NX

 =


eT

0N
eT

1N
...
eT
(N−1)N

X = FX (1.15)

Again, for help visualizing this operation, refer to the following figure.
We can now see that the iDFT is, as the DFT, just the matrix product x̃ = FX.

1.1.5 Inverse Theorem Revisited (Again)

We will continue the tradition of following every introduction of an important concept
with another proof of the inverse theorem and Parseval’s theorem. This time, however,
will be much quicker. All of the linear algebra above will be the key as to why. We can
now be much smarter and much more efficient with our proof by using these tools of
matrices that we have just learned. In fact, we can do the whole proof in one line. We’ll
do that now.

Theorem 3 The iDFT is, indeed, the inverse of the DFT.

Proof: Write x̃ = FX and X = FHx and exploit the fact that F is Hermitian.

x̃ = FX = FFHx = Ix = x (1.16)

�

Furthermore, this theorem is true for any transform pair with transformation matrix T,
provided that T is Hermitian. That is,

X = THx ⇐⇒ x̃ = TX (1.17)

As long as THT = I.

1.1.6 Parseval’s Theorem Revisited (Again)

Again, we will do the ”advanced mode” proof of Parseval’s theorem, i.e. energy conser-
vation.

Theorem 4 The DFT preserves energy ⇒ ‖x‖2 = xHx = XHX = ‖X‖2
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Proof: Use iDFT to write x = FX and exploit the fact that F is Hermitian

‖x‖2 = xHx = (FX)H FX = XHFHFX = XHX = ‖X‖2 (1.18)

�

Again, note that this theorem is true for any transform pair with transformation matrix T,
provided that T is Hermitian. That is,

X = THx ⇐⇒ x̃ = TX (1.19)

As long as THT = I.
See how easy all of these once arduous tasks have become with this new ”advanced”

system?

1.1.7 The DCT in Matrix Form

We have seen that the DFT can be defined as a matrix multiplication, and we have seen
how useful this result has been. But is this a rule or an exception? That is, are there other
transforms that can be encoded in matrices in addition to the DFT? The answer, of course,
is yes. We will see one soon in the PCA transform. And we have already seen one in the
DCT. We will not delve into too much detail with the DCT since we will not use it in this
form, but it is easy to verify that we can construct a Hermitian matrix C for that performs
the iDCT, defined as:

C =
1√
N


1 1 · · · 1

1
√

2 cos
[

2π(1)((1)+1/2)
N

]
· · ·

√
2 cos

[
2π(N−1)((1)+1/2)

N

]
...

...
. . .

...

1
√

2 cos
[

2π(1)((N−1)+1/2)
N

]
· · ·

√
2 cos

[
2π(N−1)((N−1)+1/2)

N

]

 (1.20)

The DCT matrix, then would simply be CH .
As we just saw, the inverse theorem and Parseval’s theorem hold for the DCT since its

transform matrix is Hermitian.

1.1.8 Designing Transforms for Adapted Signals

We have now seen that we can write every transform we have learned in this class as a
matrix multiplication. In the case of the DFT and the DCT, the transform matrices FH

and C do not change, regardless of the signal x. We have seen that the DFT and the DCT
provide us with a myriad of useful information about a signal’s oscillations and rates of
chance, which provides us with a tremendous amount of insight about the signal itself
that may have been disguised originally. However, because the transform matrices are
always the same, the performance of these transforms is irrespective of the signal that we
input.

However, this does not have to be the case. If we knew something about our signal, we
could, conceivably, design a specialized transform matrix T to do all the same things as the
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DFT and DCT, but better. Our only requirement, as we have seen, is that T be Hermitian.
We will see in the coming sections that we can ”know something” about a signal by means
of a stochastic model. By understanding the principles of stochastic modeling, we will
then be able to discover the power of principal component analysis. This technique is an
alternative method of transformation that uses information contained in the eigenvectors
of the covariance matrix of a data set to determine the transform matrix T.

1.2 Stochastic Signals

Before we get into the details of principle component analysis, we will first lay out some
foundations in probability.

1.2.1 Random Variables

A random variable X models something that is random, with two important points.
Firstly, the random phenomenon being modeled is one that has several different possi-
ble outcomes, and secondly, you have an idea of how likely that these outcomes may
appear. Therefore, a random variable represents all possible values that an event can take
as well as a measure of how likely those values are. A higher likelihood corresponds with
a higher chance to observe a certain value x. By convention, random variables are usually
represented in uppercase (i.e. X), whereas the values that it can take are represented in
lowercase (i.e. x).

−σx σx µYµY − σY µY + σY µZµZ − σZ µZ + σZ
x, y, z

pX(x), pY(y), pZ(y)

Figure 1.1. Examples of random signals X, Y, and Z with Gaussian, or normal, probability dis-
tributions. The red curve represents random variable X, which takes values around 0. The blue
curve representing Y has a shifted center around µY , and the green curve representing Z is centered
around µZ. Also notice that the values of X and Y are equally distributed about their respective
centers, whereas the values of Z are more concentrated about its mean.

Probabilities measure the likelihood of observing different outcomes. A larger prob-
ability indicates that an outcome is more likely to be observed over many realizations.
The probability that the random variable X takes values between x and x′ is the term
P
(

x < X ≤ x′
)
. This probability can be described with a probability density function

pX(x). A probability distribution function (pdf) tells you about how likely a variable is
around a value x (but not what the probability of x is itself).

P
(

x < X ≤ x′
)
=
∫ x′

x
pX(u) du (1.21)
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A random variable X is defined as a Gaussian, or normal, variable if its pdf is of the
form

pX(x) =
1√
2πσ

e−(x−µ)2/σ2
(1.22)

where the mean µ determines the center and the variance σ2 determines the width of
the distribution. The previous figure illustrates the effects of different µ and σ2, where
0 = µX < µY < µZ, and σ2

X = σ2
Y > σ2

Z.

1.2.2 Expectation and Variance

The expectation of a random variable is an average of the possible values weighted by
their likelihoods.

E [X] =
∫ ∞

−∞
xpX(x) dx (1.23)

In a regular average, you would sum all of the values and divide by the number of values.
However, in an expectation, you weight the values x by their relative likelihoods pX(x).

For a Gaussian random variable X, the expectation is the mean µ.

var [X] =
∫ ∞

−∞

(
x−E [X]

)2 1√
2πσ

e−(x−µ)2/σ2
dx = σ2 (1.24)

The variance of a random variable is a measure of the variability around the mean. A
large variance tells you that the likely values are spread out around the mean, and a small
variance means that the the most likely values are concentrated around the mean.

var [X] = E
[(

X−E [X]
)2
]
=
∫ ∞

−∞

(
x−E [X]

)2 pX(x) dx (1.25)

For a Gaussian random variable X, the variance is the variance σ2. For a Gaussian
random variable X the variance is the variance σ2

var [X] =
∫ ∞

−∞

(
x−E [X]

)2 1√
2πσ

e−(x−µ)2/σ2
dx = σ2 (1.26)

The variance is important because it tells you how random the random variable is. We
usually care more about the variance than the expectation. In many cases, we subtract the
mean from our signals so that we may focus only on the differences in variability between
the signals. For example, in the previous image with the red, blue, and green Gaussian
curves, it can be seen that the differences between the blue and green curves are more
important than those between the blue and red curves because of the different variances.

1.2.3 Random Signals

A random signal X is a collection of random variables with length N.

X = [X(0), X(1), . . . , X(N − 1)]T (1.27)

Each random variable has its own pdf pX(n)(x), which describes the likelihood of the
random variable X(n) taking a value around x. These individual pdfs are also called
marginal pdfs.
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Joint outcomes are also important in the description of a random variable. The joint
pdf pX(x) says how likely the signal X is to be found around the collection of values x x.

P
(
x ∈ X

)
=
∫∫
X

pX(x) dx (1.28)

1.2.4 Face Images

We can extend the idea of random signals to the dataset we are working with in the
lab, AT&T’s Database of Faces. We can imagine all possible images of human faces as
a random signal X. That’s a lot of faces to consider, so we’ll actually reduce X to the
collection of 400 face images in the Database of Faces. In this case, each random variable
of the random signal X represents each of the images and the likelihood of each of them
being chosen (e.g. 1/400 each).

Figure 1.2. Face images of the AT&T Database of Faces.

The face images are the realizations of the random variable. A realization x in our
data set is an individual face pulled from the set of possible outcomes. Realizations are
considered just regular signals, not random signals.

As a side note, we can consider an image as a 2-D matrix. In the dataset we are
working with, each image is a 112 × 92 image, so each image can be stored in a matrix of
size 112 × 92.

Mi =


m1,1 m1,2 . . . m1,92

m2,1 m2,2 . . . m2,92

...
...

. . .
...

m112,1 m112,2 . . . m112,92

 (1.29)
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Figure 1.3. Three possible realizations of the random signal X.

To make these images more manageable, we want to remove one dimension by stack-
ing the columns of the image into a vector with length 10,304 (112 multiplied by 92, the
total number of pixels in each image). This is called vectorization.

xi =
[
m1,1, m21, . . ., m112,1, m1,2, m2,2, . . ., m112,2,

..., m1,92, m2,92, . . ., m112,92

]T
(1.30)

1.2.5 Expectation, Variance, and Covariance

As a refresher of definitions, a signal’s expectation E [X] is the concatenation of individual
expectations.

E [X] =
[
E [X(0)] , E [X(1)] , . . . E [X(N − 1)]

]T
=
∫∫

xpX(x) dx (1.31)

The variance of the nth element Σnn measures the variability of the nth component.

Σnn = var [X(n)] = E
[(

X(n)−E [X(n)]
)2
]

(1.32)

We also would like to know how similar each of the signals are, which is what the
covariance describes. The covariance Σnm between two signal components X(n) and X(m)
can be written as

Σnm = E
[(

X(n)−E [X(n)]
)(

X(m)−E [X(m)]
)]

= Σmn (1.33)

The covariance Σnm, measures how much X(n) predicts X(m). If Σnm = 0, then the com-
ponents are unrelated, called orthogonal. If Σnm > 0, the components move in the same
direction, and if Σnm < 0, they move in the opposite direction. This should seem very fa-
miliar, because the interpretation of the inner product we learned with Fourier transforms
is similar.

1.2.6 Covariance Matrix

The covariance matrix is a way of concatenating or vectorizing these covariance matrices
between each pair of components. To illustrate this, let us first assume that E [X] = 0 so
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that the the covariances are Σnm = E [X(n)X(m)]. This will also show why we usually
subtract out the mean of a signal such that the signal is centered around 0. Consider the
expectation E

[
xxT] of the outer product xxT . We can write the outer product xxT as:

xxT =



x(0)x(0) · · · x(0)x(n) · · · x(0)x(N − 1)
...

. . .
...

. . .
...

x(n)x(0) · · · x(n)x(n) · · · x(n)x(N − 1)
...

. . .
...

. . .
...

x(N − 1)x(0) · · · x(N − 1)x(n) · · · x(N − 1)x(N − 1)


(1.34)

The expectation E
[
xxT] implies the expectation of each individual element of the

matrix.

E
[
xxT

]
=



E[x(0)x(0)] · · · E[x(0)x(n)] · · · E[x(0)x(N − 1)]
...

. . .
...

. . .
...

E[x(n)x(0)] · · · E[x(n)x(n)] · · · E[x(n)x(N − 1)]
...

. . .
...

. . .
...

E[x(N − 1)x(0)] · · · E[x(N − 1)x(n)] · · · E[x(N − 1)x(N − 1)]


(1.35)

We can then rewrite the (n, m) element of the matrix E
[
xxT] as the covariance Σn,m.

The result is a covariance matrix.

E
[
xxT

]
=



Σ00 · · · Σ0n · · · Σ0(N−1)
...

. . .
...

. . .
...

Σn0 · · · Σnn · · · Σn(N−1)
...

. . .
...

. . .
...

Σ(N−1)0 · · · Σ(N−1)n · · · Σ(N−1)(N−1)


(1.36)

So, we can define the covariance matrix of a random signal X as Σ := E
[
xxT]. More

generally, when the mean is not null, we define the covariance matrix as

Σ := E
[(

x−E [x]
)(

x−E [x]
)T
]

(1.37)

There are a couple of details to the structure of covariance matrices. When the mean
is null, the (n, m) element of Σ is the covariance Σn,m. The diagonal of Σ contains the
autovariances Σnn = var [X(n)], the variance between a signal and itself. The covariance
matrix is also symmetric:

((Σ))n,m = Σnm = Σmn = ((Σ))mn

.
The covariance matrix tells you what it means to have change on a specific random

signal. Because it defines and helps us understand the variability for a specific signal, it
can be used to transform the signal. After all, the DFT was built on the notion of change
with respect to complex exponentials.
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1.3 Principle Component Analysis Transform

From the covariance matrix, we understand the variability for a specific signal. We can
derive further information on the order of significance of specific components through the
concept of eigenvalues and eigenvectors.

1.3.1 Eigenvectors and Eigenvalues of the Covariance Matrix

Consider a vector v with N elements, v = [v(0), v(1), . . . , v(N − 1)]. We say that v is an
eigenvector of Σ if for some scalar λ ∈ R,

Σv = λv (1.38)

where λ is the eigenvalue associated to v. In other words, the product Σv results in a
vector in the same direction as v, but with a different-scaled length. More formally, Σv
is collinear with v. This is not the case for non-eigenvectors w, where w and Σv point in
different directions. This fact simplifies things for us, because usually when you multiply
a matrix with a vector, you get a vector with a different direction and length, but with the
covariance matrix and an eigenvector, their product only affects the length.

w

Σw

v1
Σv1 = λ1v1 v2

Σv2 = λ2v2

Figure 1.4. Three vectors multiplied by a covariance matrix Σ, where w is a non-eigenvector and vi
are eigenvectors. Notice how the product Σvi is simply a scaled version of that vector vi.

If v is an eigenvector, αv is also an eigenvector for any scalar α ∈ R. This is because
we are simply changing the length of the vector while maintaining the direction.

Σ(αv) = α(Σv) = αλv = λ(αv) (1.39)

So, eigenvectors are defined by a constant. To keep things consistent, we will be using
normalized eigenvectors with unit energy, i.e. ‖v‖2 = 1. To normalize an eigenvector v
with ‖v‖2 6= 1, divide v by the norm ‖v‖. We will also be assuming that there are N
eigenvalues and distinct associated eigenvectors. This is not necessarily true, as there are
a few details where this is not the case, but we will assume such for our case.

1.3.2 Ordering of Eigenvalues and Eigenvectors

Theorem 5 The eigenvalues of Σ are real and nonnegative ⇒ λ ∈ R and λ ≥ 0.

Proof: To prove this, we begin by writing λ = vHΣv/‖v‖2. To show that λ is real, we can write
that

vHΣv = vH (Σv) = vH (λv) = λvHv = λ‖v‖2 (1.40)

To show that vTΣv is nonnegative, and assuming E [x] = 0, we can say

vHΣv = vHE
[
xxH

]
v = E

[
vHxxHv

]
= E

[(
vHx

)(
xHv

)]
= E

[(
vHx

)2
]
≥ 0 (1.41)



1.3. PRINCIPLE COMPONENT ANALYSIS TRANSFORM 15

�

From this proof, we can now order eigenvalues from largest to smallest, e.g. λ0 ≥ λ1 ≥
. . . ≥ λN−1. The eigenvectors also inherit the same order as their associated eigenvalue,
e.g. v0, v1, . . . , vN−1. This order is important because it tells us something about how
much change happens over different directions. Since eigenvalues scale eigenvectors, a
larger scaling from a larger eigenvalue displays larger variability.

1.3.3 Orthonormality of Eigenvectors

Theorem 6 Eigenvectors of Σ associated with different eigenvalues are orthogonal.

Proof: Normalized eigenvectors v and u are associated with eigenvalues λ 6= µ.

Σv = λv, Σu = µu (1.42)

Since the matrix Σ is symmetric, we have ΣH = Σ, and it follows that

uHΣv =
(

uHΣv
)H

= vHΣHu = vHΣu (1.43)

If we make Σv = λv on the leftmost side and Σu = µu on the rightmost side, then

uHλv = λuHv = µvHu = vHµu (1.44)

From this, we conclude that the eigenvalues are different. This relationship can only be
true if vHu = 0, or if v and u are orthogonal. �

1.3.4 Eigenvectors of Face Images

Below are visualizations in 1-D and 2-D of the first four eigenvectors of the covariance
matrix.
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Figure 1.5. One dimensional representation of first four eigenvectors v0, v1, v2, v3.
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Figure 1.6. Two dimensional representation of first four eigenvectors v0, v1, v2, v3.

1.3.5 Eigenvector Matrix

Define the matrix T whose kth column is the kth eigenvector of Σ,

T =[v0, v1, . . . , vN−1] (1.45)

Since the eigenvectors vk are orthonormal, the product THT is the identity matrix.

THT =

[
v0 · · · vk · · · vN−1

]


vH
0

...
vH

k
...
vH

N−1





vH
0 v0 · · · vH

1 vk · · · vH
0 vN−1

...
. . .

...
. . .

...
vH

k v0 · · · vH
k vk · · · vH

k vN−1
...

. . .
...

. . .
...

vH
N−1vN−1 · · · vH

N−1vk · · · vH
N−1vN−1

 =



1 · · · 0 · · · 0
...

. . .
...

. . .
...

0 · · · 1 · · · 0
...

. . .
...

. . .
...

0 · · · 0 · · · 1


Thus, because we observe that THT = I, we show that eigenvector matrix T is Hermi-

tian.

1.3.6 Principle Component Analysis Transform

As we discussed earlier, any Hermitian matrix T can be used to define an information
processing transform like DFT or DCT. As such, we can use the Hermitian eigenvector
matrix to define a transform, namely the principle component analysis (PCA) transform.
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We define the PCA transform as bby = THx, and the inverse PCA (iPCA) transform as
x̃ = Ty.

We can quickly prove that the iPCA is truly the inverse of the PCA since T is Hermi-
tian.

x̃ = Ty = T
(

THx
)

= TTHx = Ix = x (1.46)

From this result, we show that the inverse of PCA transform y is an equivalent represen-
tation of x, meaning we can go back and forth using the defined PCA transform without
losing information or changing the signal.

We can also show Parseval’s theorem holds because T is Hermitian.

‖x‖2 = xHx = (Ty)H Ty = yHTHTy = yHy = ‖y‖2 (1.47)

This means that modifying the elements yk means altering the energy composition of the
signal.

The PCA transform is defined for any signal x, but we expect it to work well only
when x is a realization X.

We can compare the expanded mathematical forms of the iPCA with the iDFT as well.

x(n) =
N−1

∑
k=0

y(k)vk(n) ⇔ x(n) =
N−1

∑
k=0

X(k)ekN(n) (1.48)

As we can see, the forms are the same except that they use different bases for the
expansion. As we had developed a ”sense” with the DFT to view signals through the
frequency domain, we have now developed a new ”sense” that is not generic, but rather
adapted to the random signal X.

If we perform PCA on a face image with 10,304 pixels , we can see that there is
substantial energy in the first 15 PCA coefficients y(k) with k15, since these have the most
significant coefficient magnitudes. Furthermore, almost all of the energy of the face image
is contained in the first 50 PCA coefficients. Being able to go from 10,304 pixels to only 50
to represent almost the entire image is a compression factor of more than 200.
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Figure 1.7. Face image and its PCA coefficients for the first 50 eigenvectors.

We can see the impact of using a relatively small number of principle components
in reconstruction. As seen in the images below, increasing the number of coefficients
increases the accuracy of the reconstruction. Once we reach 50 principle components
used in reconstruction, we obtain a reconstructed image that is almost identical to the
original image.

If we examine the PCA transform for two different images of the same person, we can
see that the coefficients are similar, even if the pose, orientation, or expression of the face
are different.

However, if we examine the PCA transform for two different images with similar
poses and expressions, we end up with different PCA coefficients. This observation will
be useful in performing facial recognition, which we will discuss later.
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1.4 Dimensionality Reduction

1.4.1 Compression with the DFT

We have already seen compression in the context of the DFT and DCT in 1D and 2D,
where we compressed voice and image signals. We can transform a signal x into the
frequency domain with the DFT X = FHx, and we can recover the original signal from
X through the iDFT x = FX. We performed compression by retaining K of the N DFT
coefficients and using only those through the iDFT to obtain the approximated signal x̃:

x̃(n) =
K−1

∑
k=0

X(k)ej2πkn/N (1.49)

We can also define the compressed DFT as

X̃(k) = X(k) for k < K, X̃(k) = 0 otherwise (1.50)

and we can define the reconstructed signal from the iDFT as x̃ = FX̃.

1.4.2 Compression with the PCA

Performing compression with the PCA is mathematically almost identical as the DFT,
except that we use a different transformation matrix. The DFT uses the matrix FH , which
is a matrix of complex exponentials, and the PCA uses TH , which is a matrix constructed
from the eigenvectors of the covariance matrix. Just as we can transform a signal x into
the frequency domain, we can transform x into the eigenvector domain with the PCA
y = THx. We can recover x from y through the iPCA x = Ty. We can compress x by
retaining K out of all N PCA coefficients, which are the K eigenvectors associated with
the K first eigenvalues, to write

x̃(n) =
K−1

∑
k=0

y(k)vk(n) (1.51)

We equivalently define the compressed PCA as

ỹ(k) = y(k) for k < K, ỹ(k) = 0 otherwise (1.52)

and define the reconstructed signal from the iPCA as x̃ = Tỹ.

1.4.3 Why Keep First K Coefficients?

We keep the first K coefficients in compression strategically to represent as much of the
original signal with as few pieces of data as possible. With the DFT, we would like to retain
the coefficients that represent faster oscillations and, in turn, faster variation, because
these signals tell us more about how significant or distinct the signal is. In fact, the first
K DFT coefficients do not always correlate to the components with the fastest variation,
so sometimes we keep the K largest coefficients instead. In PCA, when we examine the
eigendecomposition of the covariance matrix, we wish to keep the eigenvalues with larger
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values because they represent more variability and therefore more dominant features.
These larger eigenvalues correspond to eigenvectors with lower ordinality. Eigenvectors
with large ordinality represent finer signal features, which we can often omit while still
retaining the majority of a signal.

1.4.4 Dimensionality Reduction

A more accurate name for PCA compression is called dimensionality reduction. When we
are taking the K first PCA coefficients, we are not compressing the signal per se. Rather,
we are reducing the number of dimensions.

As an example, consider the covariance matrix

Σ =

[
3/2 1/2
1/2 3/2

]
(1.53)

The covariance matrix has the eigenvectors v0 and v1, which are in the 45◦ and -45◦

directions, with eigenvalues λ0 = 2 and λ1 = 1.

v0 =

[
1
1

]
v1 =

[
1
−1

]
We can draw the covariance matrix as an ellipse using the eigenvectors as the directions

of the major and minor axes and the eigenvalues as the lengths of the corresponding
eigenvectors, as shown below.

We currently have 2 signals to describe the dataset with, one for each eigenvector v0
and v1. Say you could only describe the set of data with 1 signal instead of 2. Which
one would we pick? We would choose the signal with the longer-length eigenvector, v0,
because the longer length represents a large eigenvalue, which describes a signal with
more variability. This describes something that is more important than the other signal,
and you gain more information when you view the signal along the direction of greater
variability. With this in mind, we can now reduce the dimension and study the one-
dimensional signal x̃ = y(0)v0 instead of the original two-dimensional signal x.
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Figure 1.8. Original Image
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Figure 1.9. Reconstructed images using 1 and 5 principle components
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Figure 1.10. Reconstructed images using 10 and 20 principle components
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Figure 1.11. Reconstructed images using 30, 40, and 50 principle components
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Figure 1.12. Two face images of the same woman but in different poses and expressions, and their
associated PCA coefficients for the first 50 eigenvalues. Notice that the first two coefficients are
almost identical.
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Figure 1.13. Two face images of two different people with similar poses and expressions, and their
associated PCA coefficients for the first 50 eigenvalues. In contrast to the comparison of two images
of the same person, the PCA coefficients of two images of different people are much different.
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Figure 1.14. An example dataset with covariance matrix Σ
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