SYSTEMS 302
LECTURE 15

• CONFIDENCE INTERVALS IN SIMPLE LINEAR REGRESSION
 • Confidence Intervals for Betas
 • Confidence Intervals for Conditional Means
 • Prediction Intervals for Individual Values

• EXTENSIONS TO MULTIPLE REGRESSION

• For next time:
 • Devore, Sections 13.4, 8.1
USED-CAR ADVERTISING PROBLEM

An axiom of business is that advertising increases revenues. The question is how much. Suppose we have both revenue, R_i, and advertising expenditure data, A_i for 25 used-car dealerships, $i = 1, \ldots, 25$, and consider the linear model:

$$R_i = \beta_0 + \beta_1 A_i + \varepsilon_i, \quad \varepsilon_i \sim N(0, \sigma^2)$$

where β_1 reflects the expected revenue gain for each new dollar of advertising, and where β_0 is the expected revenue from all other sources.

Q1. Can we place confidence bounds on the expected revenue gain from each dollar of advertising?

Q2. Can we place confidence bounds on the expected revenue from all sources?
ESTIMATING THE INTERCEPT IN SIMPLE REGRESSION

For any simple linear regression with data \((x_i, y_i), i = 1, \ldots, n\), recall from the normal equations of least squares that

\[
\hat{\beta}_0 = \bar{Y} - \hat{\beta}_1 \bar{x} = \frac{1}{n} \sum_{i=1}^{n} Y_i - \bar{x} \sum_{i=1}^{n} w_i Y_i
\]

\[
= \sum_{i=1}^{n} \left(\frac{1}{n} - \bar{x} w_i \right) Y_i
\]

where \(w_i = (x_i - \bar{x}) / \sum_{j=1}^{n} (x_j - \bar{x})^2\). So \(\hat{\beta}_0 \sim \text{Normal}\). Also

\[
E\left(\hat{\beta}_0\right) = E\left(\bar{Y} - \hat{\beta}_1 \bar{x}\right) = E\left(\bar{Y}\right) - \bar{x} E\left(\hat{\beta}_1\right)
\]

\[
= (\beta_0 + \beta_1 \bar{x}) - \beta_1 \bar{x} = \beta_0
\]

So \(\hat{\beta}_0\) is a linear unbiased estimator of \(\beta_0\), with variance

\[
\text{var}\left(\hat{\beta}_0\right) = \sum_{i=1}^{n} \left(\frac{1}{n} - \bar{x} w_i \right)^2 \text{var}(Y_i)
\]

\[
= \sigma^2 \sum_{i=1}^{n} \left(\frac{1}{n} - \bar{x} w_i \right)^2
\]

\[
= \sigma^2 \frac{\sum_{i=1}^{n} x_i^2}{n \sum_{i=1}^{n} (x_i - \bar{x})^2}
\]
ESTIMATING RESIDUAL STANDARD DEVIATIONS

For any simple linear regression with data \((x_i, y_i), i = 1,..,n\), if we denote the regression residuals by

\[
(1) \quad \hat{\varepsilon}_i = y_i - \hat{y}_i = y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i), \quad i = 1,..,n
\]

then the natural (unbiased) sample estimate of the residual variance, \(\sigma^2\), is given by

\[
(2) \quad s_n^2 = \frac{1}{n-2} \sum_{i=1}^{n} \hat{\varepsilon}_i^2
\]

(\text{where “2” in the denominator again denotes the degrees of freedom lost in fitting the two regression parameters, } \beta_0 \text{ and } \beta_1\). Hence, the associated estimate of the residual standard deviation, \(\sigma\), (called root-mean-square error) is given by

\[
 s_n = \sqrt{\frac{1}{n-2} \sum_{i=1}^{n} \hat{\varepsilon}_i^2}
\]
The least-squares estimates \((\hat{\beta}_0, \hat{\beta}_1)\) for the parameters \((\beta_0, \beta_1)\) in a simple linear regression model with data \((x_i, y_i), i = 1, \ldots, n\) have standardization with respective \(t\)-distributions:

\[
\frac{\hat{\beta}_0 - \beta_0}{s_n \sqrt{\sum_{i=1}^{n} x_i^2 / n \sum_{i=1}^{n} (x_i - \bar{x})^2}} \sim T_{n-2}
\]

and

\[
\frac{\hat{\beta}_1 - \beta_1}{s_n \sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2}} \sim T_{n-2}
\]
CONFIDENCE INTERVALS FOR BETA ESTIMATES

For any simple linear regression with data \((x_i, y_i), i = 1, \ldots, n\), if we denote the standard error of \(\hat{\beta}_0\) by

\[
S_{\hat{\beta}_0} = s_n \sqrt{\frac{1}{n} \sum_{i=1}^{n} x_i^2 - \left(\frac{1}{n} \sum_{i=1}^{n} x_i\right)^2}
\]

(1)

and similarly denote the standard error of \(\hat{\beta}_1\) by

\[
S_{\hat{\beta}_1} = \frac{s_n}{\sqrt{\sum_{i=1}^{n} (x_i - \bar{x})^2}}
\]

(2)

then the (two-sided) \(100(1 - \alpha)\%\) confidence intervals for \(\beta_0\) and \(\beta_1\) are given by

\[
\left[\hat{\beta}_i \pm t_{\alpha/2, n-2} s_{\hat{\beta}_i}\right], \quad i = 0, 1
\]
ADVERTISING EXAMPLE

In the used-car advertising example with \(\alpha = .05 \), a 95% confidence interval on \(\beta_1 \) (expected revenue generated by each dollar of advertising) is given by

\[
\left[\hat{\beta}_1 \pm t_{.025,n-2} s_{\hat{\beta}_1} \right]
\]

where in this case \(n = 25, \hat{\beta}_1 = 19.14, s_{\hat{\beta}_1} = 1.53 \), and

\[
t_{.025,n-2} = t_{.025,23} = 2.069 \quad [\text{Table A5}]
\]

imply that

\[
\left[\hat{\beta}_1 \pm t_{.025,n-2} s_{\hat{\beta}_1} \right] = [19.14 \pm (2.069)(1.53)]
\]

\[
= [15.98, 22.31]
\]

\rightarrow \text{which is precisely the result in JMP.}
CONFIDENCE INTERVALS FOR CONDITIONAL MEANS

For any simple regression with data \((x_i, y_i), i = 1, \ldots, n,\) if we let,
\[
\bar{x} = \frac{1}{n} \sum_{i} x_i,
\]
and for each \(x\) let \(\hat{y}(x) = \hat{\beta}_0 + \hat{\beta}_1 \cdot x\) denote the estimated value of the conditional mean,
\(\mu_{Y|x} = \beta_0 + \beta_1 \cdot x,\) then the standard error of this estimated value is given by

\[
s_{\hat{y}(x)} = s_n \sqrt{\frac{1}{n} + \frac{(x - \bar{x})^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}}
\]

For each \(\alpha \in (0, 1),\) the corresponding \(100(1 - \alpha)\%\) confidence interval on the true value of the conditional mean, \(\mu_{Y|x},\) is then given by

\[
\left[\hat{y}(x) \pm t_{\alpha/2, n-2} s_{\hat{y}(x)} \right]
\]
ROD WEIGHT EXAMPLE

For an observed rough casting weight of $x = 2.72$ oz, determine a 95% confidence interval on the expected finished casing weight, $\mu_{y|x}$. Here the BLU estimator of this conditional mean is given by

(1) $\hat{y}(x) = \hat{\beta}_0 + \hat{\beta}_1 x = .308 + .642(2.72) = 2.054$

with associated standard error

(2) $s_{\hat{y}(x)} = s_n \sqrt{\frac{1}{n} + \frac{(x - \bar{x})^2}{\sum_{i=1}^{n}(x_i - \bar{x})^2}}$

To determine this value, observe that since $n = 25$, $\bar{x} = 2.64$, and since the root mean squared error is given [from JMP] by

(3) $s_n = \frac{1}{n-2} \sum_{i=1}^{n} \hat{e}_i^2 = .0113$

it only remains to calculate leverage, $\Sigma_i (x_i - \bar{x})^2$. But by the identity

(4) $s_x^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2$
we see that

\[\sum_{i=1}^{n} (x_i - \bar{x})^2 = (n - 1) s^2 = (24)(.0391)^2 \quad \text{[from JMP]} \]
\[= .0367 \]

and thus that

\[s_{Y(2.72)} = (.0113) \sqrt{\frac{1}{25} + \frac{(2.72 - 2.64)^2}{.0367}} = .0052 \]

Finally, since \(t_{0.025,n-2} = t_{0.025,23} = 2.069 \), it follows that the desired 95% confidence interval is given by

\[2.054 \pm (2.069)(.0052) = [2.043, 2.065] \]

These sharp bounds are a result of the small root-mean-squared error in the present case.
PREDICTION INTERVALS FOR INDIVIDUAL VALUES

For any simple regression with data \((x_i, y_i), i = 1, \ldots, n\), and \(\bar{x} = \frac{1}{n} \sum_i x_i\), if the random variable, \(\hat{Y}(x) = \hat{\beta}_0 + \hat{\beta}_1 \cdot x\), again denotes the estimated value of the conditional mean at \(x\), then for any new observed value, \(Y\), at \(x\) the standard error of the deviation, \(Y - \hat{Y}(x)\), is given by

\[
S_{Y-\hat{Y}(x)} = \sqrt{S_n^2 + S_{\hat{Y}(x)}^2}
\]

\[
= S_n \sqrt{1 + \frac{1}{n} + \frac{(x - \bar{x})^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}}
\]

For each \(\alpha \in (0,1)\), the corresponding \(100(1 - \alpha)\%\) prediction interval (PI) for the realized value of \(Y\) is then given by

\[
\left[\hat{Y}(x) \pm t_{\alpha/2, n-2} S_{Y-\hat{Y}(x)} \right]
\]
ROD WEIGHT EXAMPLE (Cont'd)

To obtain a 95% prediction interval for finished casting weight, \(Y(x) \) given rough casting weight, \(x = 2.72 \text{ oz} \), we only need to recalculate the relevant prediction standard error as follows:

\[
(2) \quad s_{Y-\hat{Y}(x)} = \sqrt{s_n^2 + s_{\hat{Y}(x)}^2} = s_n \sqrt{1 + \frac{1}{n} + \frac{(x - \bar{x})^2}{\sum_{i=1}^{n} (x_i - \bar{x})^2}}
\]

Having already calculated the value, \(s_{\hat{Y}(2.72)} = 0.0052 \), it is seen that the first equality offers the simplest approach in this case, and yields

\[
(3) \quad s_{Y-\hat{Y}(2.72)} = \sqrt{(0.0113)^2 + (0.0052)^2} = 0.0124
\]

Finally, recalling that \(\hat{y}(2.72) = 2.054 \text{ and } t_{.025,23} = 2.069 \), it follows that the desired 95% prediction interval for this case is given by

\[
(5) \quad 2.054 \pm (2.069)(0.0124) = [2.028, 2.079]
\]

These wider bounds emphasize the key difference between individual and mean predictions.
CRITICAL CONFIDENCE EXAMPLE

Suppose that the minimal acceptable finished-casting weight for rods is $y = 2.02\text{ oz}$. How confident can one be that a rough casting weight of $x = 2.72\text{ oz}$ will yield an acceptable rod? Observe first that

$\text{(1)} \quad P \left(\frac{Y - \hat{Y}(x)}{S_{Y - \hat{Y}(x)}} \geq -t_{\alpha,n-2} \right) = 1 - \alpha$

$\Rightarrow P(Y \geq \hat{Y}(x) - t_{\alpha,n-2} S_{Y - \hat{Y}(x)}) = 1 - \alpha$

so that $[\hat{y}(x) - t_{\alpha,n-2} S_{Y - \hat{Y}(x)}, \infty)$ yields a $100(1 - \alpha)$% upper prediction interval for Y. Thus the relevant “knife edge” problem here is to find α so that

$\text{(2)} \quad \hat{y}(x) - t_{\alpha,n-2} S_{Y - \hat{Y}(x)} = 2.02$

$\Rightarrow t_{\alpha,n-2} = \frac{\hat{y}(x) - 2.02}{S_{Y - \hat{Y}(x)}} = \frac{2.054 - 2.02}{.0124} = 2.742$

$\Rightarrow \alpha = \alpha(2.742,23) < \alpha(2.7,23) = .006$

$\Rightarrow C^* > 100(1 - .006) = \boxed{99.4\%}$