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A simple Predator-Prey model

I Populations of X prey molecules and Y predator molecules

I Three possible reactions (events)

⇒ Prey reproduction: X → 2X

⇒ Prey consumption to generate predator: X+Y → 2Y

⇒ Predator death: Y → ∅

I Each prey reproduces at rate α

⇒ Population of X preys ⇒ αX = rate of first reaction

I Prey individual consumed by predator individual on chance encounter

⇒ X prey and Y predator ⇒ βXY = rate of second reaction

⇒ β = Rate of encounters between prey and predator individuals

I Each predator dies off at rate γ

⇒ Population of Y predators ⇒ γY = rate of third reaction
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The Lotka-Volterra equations

I Study population dynamic ⇒ X (t) and Y (t) as functions of time t

I Conventional approach: model system as system of differential eqs.

⇒ Lotka-Volterra (LV) differential equations

I Change in prey (dX (t)/dt) = Prey generation - Prey consumption

I Prey is generated when it reproduces ⇒ rate αX (t)

I Prey consumed by predators ⇒ rate βX (t)Y (t)

dX (t)

dt
= αX (t)− βX (t)Y (t)

I Predator change (dY (t)/dt) = Predator generation - consumption

I Predator is generated when it consumes prey ⇒ rate βX (t)Y (t)

I Predator consumed when it dies off ⇒ rate γY (t)

dY (t)

dt
= βX (t)Y (t)− γY (t)
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Solution of the LV equations

I LV equations are non-linear but can be solved numerically
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I Prey reproduction rate α = 1

I Predator death rate γ = 0.1

I Predator consumption of prey β = 0.1

I Initial state X (0) = 4 Y (0) = 10

I Boom and bust cycles

I Start with prey reproduction > consumption ⇒ prey X (t) increases

I Predator production picks up (proportional to X (t)Y (t))

I Predator production > death ⇒ predator Y (t) increases

I Eventually prey reproduction < consumption ⇒ prey X (t) decreases

I Predator production slows down (proportional to X (t)Y (t))

I Predator production < death ⇒ predator Y (t) decreases

I Prey reproduction > consumption (start over)
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State space diagram

I State-space diagram ⇒ plot Y (t) versus X (t)

I System constrained to single orbit given by initial state X (0), Y (0)
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(X(0),Y(0)) = 

Buildup: Prey increases fast, predator increases slowly (move right and slightly up)

Boom: Predator increases fast depleting prey (move up and left)

Bust: When prey is depleted predator collapses (move down almost straight)
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Two observations

I Too much regularity for a natural system (exact periodicity forever)
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I X (t), Y (t) modeled as continuous but actually discrete. Is this a problem?

I If X (t), Y (t) large can interpret as
concentrations (molecules/volume)

I Accurate in many cases (millions of molecules)

I If X (t), Y (t) small does not make sense

I Our simulation had 7/100 prey at some point

I There is an extinction event we are missing 0 10 20 30 40 50 60 70 80 90 1000
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Things deterministic model explains (or does not)

I Deterministic model is useful ⇒ E.g. boom and bust cycles

⇒ Important property that the model predicts and explains

I But it does not capture some aspects of the system. E.g.,

⇒ Non-discrete population sizes (unrealistic fractional molecules)

⇒ No random variation (unrealistic regularity)

I Possibly missing important phenomena ⇒ e.g., extinction

I Shortcomings most pronounced when number of molecules is small

I Important in biochemistry at cellular level (1 ∼ 5 molecules typical)

I Address these shortcomings through a stochastic model
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Stochastic model

I Three possible reactions (events) occurring at rates c1, c2 and c3

⇒ Prey reproduction: X
c1→ 2X

⇒ Prey consumption to generate predator: X+Y
c2→ 2Y

⇒ Predator death: Y
c3→ ∅

I Denote as X (t), Y (t) number of molecules by time t

I Can model X (t), Y (t) as continuous time Markov chains (CTMCs)?

I Large population size argument not applicable because we want to
model systems with small number of molecules
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Stochastic model (continued)

I Consider system with 1 prey molecule x and 1 predator molecule y

I Let T2(1, 1) be the time until x reacts with y

I Since T2(1, 1) is the time until x encounters y and x and y move
randomly around it is reasonable to model T2(1, 1) as memoryless

P
[
T2(1, 1) > s + t

∣∣T2(1, 1) > s
]

= P [T2(1, 1) > t]

I T2(1, 1) is exponential with parameter c2

I If there are X prey and Y predator there are XY possible reactions
between a specimen of type X and a specimen of type Y

I Let T2(X ,Y ) be the time until the first of these reactions occurs

I Min. of exponential RVs is exponential with summed parameters

⇒ T2(X ,Y ) is exponential with parameter c2XY

I Likewise time T1(X ) until first reaction of type 1 is exponential with
parameter c1X and time T3(Y ) is exponential with parameter c3Y
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CTMC model

I If reaction times are exponential can model as CTMC

I CTMC state is pair (X ,Y ) with nr. of prey and predator molecules

X , Y X+1, YX−1, Y

X , Y+1

X , Y−1

X−1, Y+1

X+1, Y−1

c1X

c2XY

c3Y

c1(X − 1)

c2(X + 1)(Y − 1)

c3(Y + 1)

c1(X − 1)

c1X

c2(X + 1)Y

c2X (Y − 1)

c3(Y + 1)

c3Y

Transition rates

I (X ,Y )→ (X + 1,Y ):
Reaction 1 = c1X

I (X ,Y )→ (X−1,Y+1):
Reaction 2 = c2X

I (X ,Y )→ (X ,Y − 1):
Reaction 3 = c3X
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Simulation of CTMC model

I Use CTMC model to simulate Predator-prey model

I Initial conditions are X (0) = 50 prey and Y (0) = 100 predator
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I Prey reproduction rate
c1 = 1 reactions/second

I Rate of predator consumption of prey
c2 = 0.005 reactions/second

I Predator death rate
c3 = 0.6 reactions/second

I Boom and bust cycles are still the dominant feature of the system
but random variations are apparent
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CTMC model in state space

I Plot Y (t) versus X (t) for the CTMC ⇒ state space representation
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I There is not a single fixed orbit as before

I Can think of this orbit as a perturbed version of deterministic orbit
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Effects of different population sizes

I Chance of extinction captured by CTMC model (top plots)

0 10 20 30
0

500

1000

1500

2000

Time

Po
pu

lat
ion

 S
ize

X(0) = 8, Y(0) = 16

 

 
X (Prey)
Y (Predator)

0 10 20 30
0

200

400

600

800

1000

Time

Po
pu

lat
ion

 S
ize

X(0) = 16, Y(0) = 32

 

 
X (Prey)
Y (Predator)

0 10 20 30
0

100

200

300

400

500

600

700

Time

Po
pu

lat
ion

 S
ize

X(0) = 32, Y(0) = 64

 

 
X (Prey)
Y (Predator)

0 10 20 30
0

100

200

300

400

500

Time

Po
pu

lat
ion

 S
ize

X(0) = 64, Y(0) = 128

 

 
X (Prey)
Y (Predator)

0 10 20 30
0

50

100

150

200

250

300

350

Time

Po
pu

lat
ion

 S
ize

X(0) = 128, Y(0) = 256

 

 
X (Prey)
Y (Predator)

0 10 20 30
0

200

400

600

800

1000

Time
Po

pu
lat

ion
 S

ize

X(0) = 256, Y(0) = 512

 

 
X (Prey)
Y (Predator)

(Notice that Y-axis scales are different)
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Conclusions and the road ahead

I Deterministic vs. stochastic modeling

I Deterministic modeling is simpler

⇒ Captures dominant features (boom & bust cycles)

I Stochastic simulation more complex

⇒ Less regularity, (all runs are different, state orbit not fixed)

⇒ Captures effects missed by deterministic solution (extinction)

I Gillespie’s algorithm. Forthcoming

I Building a CTMC model for every system of reactions is cumbersome

I Impossible if there are tens or hundreds of types and reactions

I Gillespie’s algorithm is just a general way of writing a simulation
code for a generic system of chemical reactions
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Gillespie’s algorithm

Predator-Prey model (Lotka-Volterra system)

Gillespie’s algorithm

Dimerization Kinetics

Enzymatic Reactions

Auto-regulatory gene network

Lactose digestion (lac operon)

Stoch. Systems Analysis Simulation of Chemical Reactions 16



Simulation of chemical reactions

I Chemical system with m reactant types and n possible reactions

I Reactant quantities change over time as reactions occur

I Nr. of type j reactants at time t denoted as Xj(t)

I System’s state ⇒ vector X(t) := [X1(t),X2(t), . . . ,Xj(t)]T

I To specify i-th reaction ⇒ reactants, products and rates

Ri : s li1X1 + s li2X2 + . . .+ s limXm
hi (X)→ s ri1X1 + s ri2X2 + . . .+ s rimXm

I (s li1 molecules of type 1) + . . .+ (s lim molecules of type m) react ...
... to yield (s ri1 of type 1) + . . .+ (s rim of type m)

I Rate of reaction hi (X) depends on number of molecules present

I Let Ti (X) denote the time until the i-th reaction when state is X
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Stoichiometry matrices

I Can be more conveniently written using matrices

⇒ Define vector of rates h(X) = [h1(X), h2(X), . . . , hn(X)]T

⇒ Define stoichiometry left matrix S(l) with elements s lij

⇒ Define stoichiometry right matrix S(r) with elements s rij

I Write system of chemical reactions as ⇒ S(l)X
h(X)→ S(r)X

s l11 s l12 · s l1m
· · · ·
s li1 s li2 · s lim
· · · ·
s ln2 s ln2 · s lnm





X1

X2

·
Xm




s l11X1 + . . . + s l1mXm

·
s li1X1 + . . . + s limXm

·
s ln1X1 + . . . + s lnmXm




S(l)

= X

S(l)X

=

sr11 sr12 · sr1m
· · · ·
sri1 sri2 · srim
· · · ·
srn2 srn2 · srnm





X1

X2

·
Xm




sr11X1 + . . . + sr1mXm

·
sri1X1 + . . . + srimXm

·
srn1X1 + . . . + srnmXm




S(r)

= X

S(r)X
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Example 1: Dimerization kinetics

I Molecule can exist in simple form P and as a dimer D

I Define vector X := [P,D]T

I Possible reactions are dimerization and dissociation

R1 (Dimerization): 2P
h1(X)→ D

R2 (Dissociation): D
h2(X)→ 2P

I Rates and stoichiometry matrices S(l) and S(r) given by

S(l) =

[
2 0
0 1

]
, S(r) =

[
0 1
2 0

]
, h(X) =

[
h1(X)
h2(X)

]
I Rewrite equations more compactly as ⇒ S(l)X

h(X)→ S(r)X
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Example 2: Enzymatic reaction

I Substrate S converted to product P. Enzyme E catalyzes conversion

I Converting S into P directly requires significant energy

I Enzyme E reacts with S to form intermediate molecule SE (binding)

I Molecule SE then separates into product P liberating E (conversion)

I This cycle requires less energy than direct conversion

I SE may also separate back into S and E (dissociation)

I Possible reactions are binding, conversion and dissociation, then

R1 (Binding): S + E
h1(X)→ SE

R2 (Dissociation): SE
h2(X)→ S + E

R3 (Conversion): SE
h3(X)→ E + P
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Example 2: Enzymatic reaction (continued)

I System state represented by vector X := [S ,E ,SE ,P]T

I Stoichiometry matrices S(l) and S(r) given by

S E SE P S E SE P

S(l) =

 1 1 0 0
0 0 1 0
0 0 1 0

 R1

R2

R3

S(r) =

 0 0 1 0
1 1 0 0
0 1 0 1

 R1

R2

R3

I Reaction rate vector h(X) = [h1(X), h2(X), h3(X)]T

I Rewrite equations more compactly as ⇒ S(l)X
h(X)→ S(r)X
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Second order reaction

I Consider second order reaction Ri : X1 + X2 → . . . (two reactants)

I Let Ti (X1,X2) be time until R occurs when there are X1 type 1 and
X2 type 2 molecules

I Have seen that Ti (X1,X2) is exponentially distributed with rate

hi (X) = hi (X1,X2) = ciX1X2

I Constant ci measures reactivity of X1 and X2

I Argument ⇒ Ti (1, 1) memoryless (depends on chance encounter)

⇒ Thus Ti (1, 1) is exponential with, say, parameter ci

⇒ Ti (X1,X2) is the minimum of X1X2 exponentials

⇒ Ti (X1,X2) exponential with parameter ciX1X2
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Second order involving molecules of same type

I Second order reaction with two molecules of same type

Ri : X1 + X1 → . . .

I Hazard depends on the number of molecules X1, i.e. hi (X) = hi (X1)

I Reaction does not occur if there is a single molecule

I If there are 2 molecules Ti (2) is exponential with parameter, say, ci
I For arbitrary X1 there are X1(X1 − 1)/2 possible encounters

I Then, Ti (X1) is exponential with parameter

hi (X) = hi (X1) = ciX1(X1 − 1)/2

I ciX1(X1 − 1)/2 substantially different from ciX
2
1 /2 for small X1
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Zero-th, first and higher order reactions

I Zero-th order reaction Ri : ∅ → X1 (spontaneous generation)

I Assume an exponential model with constant rate hi = ci
I Used to model exogenous factors (and biblical phenomena)

I First order reaction Ri : X1 → . . . (decay)

I Exponential with rate hi (X) = hi (X1) = ciX1

I Higher order reactions involving more than two reactants

I E.g., third order reaction Ri : X1 + X2 + X3 → X4

I Time until next Ri reaction exponential. Hazard: hi (X) = ciX1X2X3

I Reactions of order more than 2 are rare

I Most likely, Ri is encapsulating two second order reactions

X1 + X2 → X5, X5 + X3 → X4
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The hazard function

I All reaction times are exponential RVs ⇒ CTMC with state X

I Hazards hi (X) determine transition rates of CTMC

I Hazards for zero-th, first and second order reactions (for reference)

Order Reaction Rate

zero-th ∅ c→ · · · c

first X1
c→ · · · cX1

second X1 + X2
c→ · · · cX1X2

second 2X1
c→ · · · cX1(X1 − 1)/2

I Probability of reaction Ri happening in infinitesimal time ε is

P [Ti (X) < ε] = hi (X)ε+ o(ε)

I That’s why the name hazard
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State transition for given reaction

I State is X(t) = X. Reaction Ri occurs. Next state X(t + dt) = Y?

I Number of reactants per type =

= i-th row of left stoichiometry matrix s
(l)
i = [s li1, s

l
i2, . . . , s

l
im]T

s li1X1 + s li2X2 + . . .+ s limXm
hi (X)→ . . .

I Number of products per type =

= i-th row of right stoichiometry matrix s
(r)
i = [s ri1, s

r
i2, . . . , s

r
im]T

. . .
hi (X)→ s ri1X1 + s ri2X2 + . . .+ s rimXm

I X decreases by nr. of reactants and increases by nr. of products

I Next sate is ⇒ Y = X− s
(l)
i + s

(r)
i (upon reaction Ri )
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Transition rates and probabilities

I q(X,Y) = transition rate from state X to state Y. Given by

q
(
X,X− s(l)i + s(r)i

)
= hi (X), i = 1, . . . , n

I Transition from state X to X− s
(l)
i + s

(r)
i when reaction Ri occurs

I ν(X) = Transition rate out of X into any state (any reaction occurs)

ν(X) =
n∑

i=1

q
(
X,X− s(l)i + s(r)i

)
=

n∑
i=1

hi (X)

I P(X,Y) = Prob. of going into Y given transition out of X occurs

P
(
X,X− s(l)i + s(r)i

)
=

q
(
X,X− s(l)i + s(r)i

)
ν(X)

=
hi (X)

ν(X)

I Probability that i-th reaction occurs given that a reaction occurred
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Gillespie’s algorithm

Gillespie’s algorithm = Simulation of CTMC

Input: Stoichiometry matrices S(l) and S(r). Initial state X(0)

Output: Molecule numbers as a function of time X(t)

(1) Initialize time and CTMC’s state t = 0, X = X(0)

(2) Calculate all hazards ⇒ hi (X)

(3) Calculate transition rate ⇒ ν(X) =
∑n

i=1 hi (X)

(4) Draw random time of next reaction ∆t ∼ Exp
(
ν(X)

)
(5) Advance time to t = t + ∆t

(6) Draw reaction at time t + ∆t ⇒ Ri drawn with prob. hi (X)/ν(X)

(7) Update state vector to account for this reaction ⇒ X− s
(l)
i + s

(r)
i

(8) Repeat from (2)
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Dimerization Kinetics
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Dimerization

I Dimerization occurs when two like molecules join together

I Many proteins (P) will form dimers (D)

I Dimerization may be rare in relative terms, but significant in absolute

terms at high concentration. For this reason plays important role in

auto-regulation of protein production

I Possible reactions are dimerization and dissociation

R1 (Dimerization): 2P
c1→ D

R2 (Dissociation): D
c2→ 2P

I Dimerization rare and dimers unstable ⇒ c2 � c1

I Stoichiometry matrices S(l) and S(r) given by

S(l) =

[
2 0
0 1

]
, S(r) =

[
0 1
2 0

]
,

I Rate of reaction 1 is h1(X) = c1P(P − 1)/2. Reaction 2 is h2(X) = c2D
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Gillespie’s algorithm for dimerization kinetics

(1) Initialize time and CTMC’s state t = 0, P = P(0), D = D(0)

(2) Calculate hazards ⇒ h1(X) = c1P(P − 1)/2,
⇒ h2(X) = c2D

(3) Calculate transition rate ⇒ ν(X) = c1P(P − 1)/2 + c2D

(4) Draw random time of next reaction

∆t ∼ exp
(
ν(X)

)
= exp

(
c1P(P − 1)/2 + c2D

)
(5) Advance time to t = t + ∆t

(6) Draw reaction at time t + ∆t

P [Dimerization:] = c1P(P − 1)/2/ν(X)
P [Dissociation:] = c2D/ν(X)

(7) Update state vector ⇒ Dimerization: P = P − 2, D = D + 1
⇒ Dissociation: P = P + 2, D = D − 1

(8) Repeat from (2)
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Stochastic simulation of dimerization kinetics

I Run of Gillespie’s algorithm for dimerization kinetics

I Initial condition P(0) = 301, D(0) = 0 (protein only)
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I Dimerization hazard

c1 = 1.66× 10−3 reactions

sec./molecule2

I Dissociation hazards

c2 = 0.2× 10−3 reactions

sec./molecule

I c = [c1, c2]T = [1.66× 10−3, 0.2]T

I P and D “stabilize” at point where dimerization and dissociation
become equally likely
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Information that can be obtained from simulations

I E.g., consider nr. of protein molecules P (P(t) + 2D(t) is constant)

I Mean and standard deviation of P versus time?

I Right graph ⇒ mean and ±3(standard deviations) over 104 trials

I Left graph shows 20 trials
I Vary around mean path but stay within ±3-standard deviations
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Steady-state probability distribution

I Time t = 10 seconds ⇒ approximate PMF over 104 trials

I Can use ergodicity instead
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I Bell-shaped. Only odd values of P are possible

I Runs are all odd or all even depending on initial condition
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Enzymatic reactions

Predator-Prey model (Lotka-Volterra system)

Gillespie’s algorithm

Dimerization Kinetics

Enzymatic Reactions

Auto-regulatory gene network

Lactose digestion (lac operon)
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Enzymes

I Substrate S converted into product P by action of enzyme E

I Intermediate product SE generated by combination of E and S

I SE later separates into product P liberating the enzyme E

I SE may also dissociate into S and E

I Enzymes can act as catalysts for reactions that would otherwise
rarely or never take place

I Possible reactions are binding, dissociation and conversion

R1 (Binding): S + E
c1→ SE

R2 (Dissociation): SE
c2→ S + E

R3 (Conversion): SE
c3→ P + E

I Dissociation typically not significant because c2 � c3
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Enzymatic reactions (continued)

I Stoichiometry matrices S(l) and S(r) given by

S E SE P S E SE P

S(l) =

 1 1 0 0
0 0 1 0
0 0 1 0

 R1

R2

R3

S(r) =

 0 0 1 0
1 1 0 0
0 0 1 1

 R1

R2

R3

I Reaction rates are

⇒ Reaction R1 (Binding): h1(X) = c1S × E ,

⇒ Reaction R2 (Dissociation): h2(X) = c2SE

⇒ Reaction R3 (Conversion): h3(X) = c3SE
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Gillespie’s algorithm for enzymatic reactions

(1) Initialization: t = 0, S = S(0), E = E(0), SE = SE(0), P = P(0)

(2) Calculate hazards ⇒ h1(X) = c1S × E ,
⇒ h2(X) = c2SE
⇒ h3(X) = c3SE

(3) Calculate transition rate ⇒ ν(X) = c1S × E + c2SE + c3SE

(4) Draw random time of next reaction

∆t ∼ exp
(
ν(X)

)
= exp

(
c1S × E + c2SE + c3SE

)
(5) Advance time to t = t + ∆t

(6) Draw reaction at time t + ∆t

P [Binding:] = c1S × E/ν(X)
P [Dissociation:] = c2SE/ν(X)
P [Conversion:] = c3SE/ν(X)

(7) Update state vector ⇒ Binding: S = S − 1, E = E − 1, SE = SE + 1
⇒ Dissociation: S = S + 1, E = E + 1, SE = SE − 1
⇒ Conversion: P = P + 1, E = E + 1, SE = SE − 1

(8) Repeat from (2)
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Stochastic simulation of enzymatic reactions

I Run of Gillespie’s algorithm for enzymatic reactions

I Initialize with only substrate and enzyme present

S(0) = 301, E(0) = 120, SE(0) = 0, P(0) = 0
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I Binding hazard

c1 = 1.66× 10−3 reactions

sec./molecule2

I Dissociation hazard

c2 = 10−4 reactions

sec./molecule

I Conversion hazard

c3 = 0.1
reactions

sec./molecule

I c = [c1, c2, c3]T= [1.66× 10−3, 10−4, 0.1]T
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Stochastic simulation (continued)

I At the beginning substrate and enzyme numbers decline as they bind to
each other to form intermediate product SE

I Intermediate product separates into final product P liberating enzyme E

I By t = 50 seconds substrate is completely converted into product and
enzymes are free. There is no intermediate product either
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Auto-regulatory gene network

Predator-Prey model (Lotka-Volterra system)

Gillespie’s algorithm

Dimerization Kinetics

Enzymatic Reactions

Auto-regulatory gene network

Lactose digestion (lac operon)
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Auto-regulation of protein production

I Simplified model of protein production in prokaryotes

I “Instructions” for creating protein (P) “encoded” in gene (G)

I To produce protein, gene G is first transcribed into mRNA (R)

I This mRNA is passed on to a ribosome to “assemble” the protein

I Protein production usually triggered by external stimuli

I How is it halted?

⇒ Negative feedback loops called auto-regulatory networks

I As protein numbers increase, so does presence of a byproduct,
I E.g., a protein dimer (D)

I Byproducts show affinity to bind to the gene blocking transcription

I Halting transcription slows/halts protein production
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Reactions of the auto-regulatory network

I Protein production consists of transcription and assembly

Transcription: G
c1→ G + R

Assembly: R
c2→ R + P

I Dimer is generated as a byproduct of protein production

Dimerization: 2P
c3→ D

Dissociation: D
c4→ 2P

I Dimer binds to mRNA blocking transcription. Blocked gene may be “liberated”

Repression: G + D
c5→ GD

Liberation: GD
c6→ G + D

I Protein and mRNA eventually degrade (mRNA degradation common)

mRNA degradation: R
c7→ ∅

Protein degradation: P
c8→ ∅
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Approach to modeling

I We will use rate constants

C =



c1 (transcription) = 0.01

c2 (assembly) = 10

c3 (dimerisation) = 1

c4 (dissociation) = 1

c5 (repression) = 1

c6 (reverse repression) = 10

c7 (mRNA degradation) = 0.1

c8 (protein degradation) = 0.01


I

gene

G (0)= 10,
repressed gene

P2G (0) =
mRNA

R(0)=
protein

P(0)=
dimer

P2(0)= 0

I Because of the very small numbers of molecules involved, a
continuous deterministic approach would not provide accurate
results.
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The stochastic solution

I Stochastic simulation. Protein dimer and mRNA numbers shown

I mRNA numbers are very small (0, 1 or 2)
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I Increase in protein & dimer triggered by mRNA transcription events

I Transcription events spread out when protein nrs. are large

I Transcription events occur more rapidly when there is less protein
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Notes

I Because there are a very small number of genes, the stochastic
nature of the number of mRNA molecules transcribed is very clearly
evident.

I Even though there are larger numbers of P2, their numbers are
affected directly by the mRNA transcription events, so stochasticity
still dominates.
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Observing the distribution

I At steady-state, we find the following PMF for the number of protein
molecules (over 10,000 trials, using the property of ergodicity):
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I Notice that the distribution is very evenly centered around 25,
showing successful auto-regulation.
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Lactose digestion (lac operon)

Predator-Prey model (Lotka-Volterra system)

Gillespie’s algorithm

Dimerization Kinetics

Enzymatic Reactions

Auto-regulatory gene network

Lactose digestion (lac operon)
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Auto-regulation of protein production

I Simplified model of protein production in prokaryotes

I “Instructions” for creating proteins “encoded” in genes

I To produce proteins, genes are first transcribed into mRNA

I This mRNA is passed on to a ribosome to “assemble” the protein

I Protein production not immutable. How does it changes over time?

I Auto regulatory gene networks

⇒ Production triggered by external stimuli

⇒ Halted by negative feedback loops through protein byproducts

I E.g. Production of β-galactosidase to digest glucose

⇒ Lac-operon (lac for lactose, operon=set of interacting genes)
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Glucose, Lactose and β-galactosidase

I Glucose (G) and lactose (L) are variations of sugars

I Cells use glucose for energy but can reduce lactose to glucose

I Lactose reduced to glucose by enzyme β-galactosidase (βG )

Lactose digestion: L + βG
c1→ G + βG

Glucose consumption: G
c2→ ∅

I Did not model enzymatic reaction (compare with earlier example)

I Rate of lactose digestion c1L× (βG ). Glucose consumption c2G

I Producing β-galactosidase is not always necessary

I Production necessary only when lactose is present and glucose is not
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Lac-operon, normal state

I Lac-operon consists of three adjacent genes

I Promoter, operator and β-galactosidase code (three types in fact)

I Lac-operon has three possible states, regular, activated and repressed

I In normal state (Op) transcription proceeds at a small rate c3
I The promoter is a binding place for RNA polymerase (RNAP)

I RNAP binds to promoter to initiate gene transcription into mRNA

promoter operator lac x lac y lac z

RNAP
mRNA

I Model reaction as ⇒ Regular transcription: Op
c3→ Op + mRNA
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Lac-operon in activated state

I Operon activated (AOp) by catabolite activator protein (CAP)

I CAP binds upstream of the promoter altering DNA’s geometry

I Thereby facilitating (promoting) binding of RNAP to promoter

I Hence yielding a faster rate of transcription c4 � c3

promoter operator lac x lac y lac z

CAP

RNAP

mRNA

I Model reaction as ⇒ Activated transcription: AOp
c4→ AOp + mRNA
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Lac-operon in repressed state

I Operon repressed (ROp) by lactose repressor protein protein (LRP)

I LRP encoded by gene adjacent to lac operon, is always expressed
and has great affinity with the operator

I If LRP binds to operator it interferes with RNAP–promoter binding

I Without RNAP, there is no (or minimal) transcription

I Hence yielding a very slow rate of transcription c5 � c3 � c4

promoter operator lac x lac y lac z

L
R
P

RNAP
mRNA

I Model reaction as ⇒ Repressed transcription: ROp
c5→ ROp + mRNA
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Repression control

I If there is no lactose (L) present lac operon is in repressed state

I When lactose is present it combines with LRP

I Thereby preventing repression of lac operon. Lac operon in regular state

⇒ Small (but not minimal) rate of β-galactosidase production

promoter operator lac x lac y lac z

RNAP
mRNA LRP

Lactose

I We model this with the following reactions

Operon repression: LRP + Op
c6→ ROp

Operon liberation: ROp
c7→ LRP + Op

Repressor neutralization: LRP + L
c8→ LRPL

Repressor dissociation: LRPL
c9→ LRP + L
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Activation control

I Prevalence of CAP inversely proportional to glucose levels

I This involves a complex set of reactions in itself

I For a preliminary model the following reactions suffice

Operon activation: CAP + Op
c10→ AOp

Operon deactivation: AOp
c11→ CAP + Op

CAP neutralization: CAP + G
c12→ CAPG

CAP dissociation: CAPG
c13→ CAP + G

I If glucose is present, CAP is bound to glucose

I Thereby preventing activation of lac operon

⇒ Small rate of β-galactosidase production

promoter operator lac x lac y lac z

RNAP
mRNA CAP

Glucose
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Glucose, lactose and lac-operon states

I High lactose and high glucose (glucose preferred)
I CAP bound to glucose and LRP bound to lactose
I Operon in regular state, low production of β-galactosidase

I High lactose and low glucose (lactose only option)
I CAP bound upstream of promoter and LRP bound to lactose
I Operon in activated state, high production of β-galactosidase

I High glucose and low lactose (glucose dominant and preferred)
I CAP bound to glucose and LRP bound to operator
I Operon in repressed state, minimal production of β-galactosidase

I Low glucose and low lactose (no energy source available)
I CAP bound upstream of promoter and LRP bound to operator
I Repression dominates, minimal production of β-galactosidase

I β-galactosidase produced in significant quantities only with high
lactose and low glucose concentrations
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β-galactosidase assembly and decays

I To complete model we add reactions to account for

⇒ Assembly of β-galactosidase (βG ) enzyme

⇒ mRNA and βG decay

Protein synthesis: mRNA
c14→ mRNA + βG

mRNA decay: mRNA
c15→ ∅

βgalactosidase decay: βG
c16→ ∅
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Reactions modeling digestion of lactose

I Model of auto-regulatory gene network for digestion of lactose

I Rates in reactions/minute/molecule or reactions/minute/molecule2

Lactose digestion: L+ βG
c1→ G + βG c1 = 1

Glucose consumption: G
c2→ ∅ c2 = 0.1

Regular transcription: Op
c3→ Op +mRNA c3 = 0.01

Activated transcription: AOp
c4→ AOp +mRNA c4 = 0.1

Repressed transcription: ROp
c5→ ROp +mRNA c5 = 0.001

Operon repression: LRP + Op
c6→ ROp c6 = 1

Operon liberation: ROp
c7→ LRP + Op c7 = 1

I Compare rates c3-c5 for lac operon in different states
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Reactions modeling digestion of lactose (continued)

I Model of auto-regulatory gene network for digestion of lactose

I Rates in reactions/minute/molecule or reactions/minute/molecule2

Repressor neutralization: LRP + L
c8→ LRPL c8 = 10

Repressor dissociation: LRPL
c9→ LRP + L c9 = 1

Operon activation: CAP + Op
c10→ AOp c10 = 1

Operon deactivation: AOp
c11→ CAP + Op c11 = 1

CAP neutralization: CAP + G
c12→ CAPG c12 = 10

CAP dissociation: CAPG
c13→ CAP + G c13 = 1

Protein synthesis: mRNA
c14→ mRNA+ βGc14 = 1

mRNA decay: mRNA
c15→ ∅ c15 = 1

βgalactosidase decay: βG
c16→ ∅ c16 = 0.1

I Notice that LRP and CAP neutralization are fast (rates c8 and c12)
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Stochastic simulation: diauxie pattern

I Initial state ⇒ L = 50, G = 50, CAP = 10, LRP = 10

I Only 1 operon in regular state
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I Sugars (glucose and lactose) consumed sequentially

⇒ Glucose is consumed first

⇒ After glucose is depleted, lactose converted to glucose

⇒ After conversion, newly generated glucose is also consumed

I Yields two growth spurts = diauxie pattern
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Operon state and diauxie pattern

I Conversion occurs with operon in activated state
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mRNA transcription & β-Galactosidase synthesis

I Operon activation ⇒ mRNA transcription ⇒ β-Galactosidase synthesis
⇒ lactose digestion
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