
Continuous time Markov chains (week 10)
Solutions

1 Stochastic simulation of Lotka and Volterra’s predator-prey model. To implement Gillespie’s
algorithm in the case of Lotka and Volterra’s predator-prey model, the following steps were taken.

1) Time and CTMC state were initialized as T0 = 0 and X(0) =

[
50
100

]
2) All hazards hi(X) were calculated for each state as:

• h1(X,Y ) = c1X = X
• h2(X,Y ) = c2XY = 0.005XY
• h1(X,Y ) = c3 ∗ Y = 0.6Y

3) The transition rate ν(X) was calculated for each state as

ν(X,Y ) = h1(X,Y ) + h2(X,Y ) + h3(X,Y ) = X + 0.005XY + 0.6Y

4) The random time of the next reaction was drawn for each state by choosing a value from the
exponential distribution with parameter ν(X,Y ).

5) Time was incremented by the above value.
6) An specific event, i, was drawn (at the above time) with the probabilities P{Ri}:

• P{R1} = X
νX,Y

• P{R2} = 0.005XY
νX,Y

• P{R3} = 0.6Y
νX,Y

7) The state vector was updated using the stoichiometry left and right matrices:

S(l) =

1 0
1 1
0 1

S(r) =

2 0
0 2
0 0


When were derived from the reactions specified by the model, namely:

R1 : X → 2X

R2 : X + Y → 2Y

R3 : Y → ∅

The state was updated with the equation Xt+1 = Xt− s(l)i + s
(r)
i , where si is the ith row of either

stoichiometry matrix and i is determined by which event is drawn.
8) This process (from step 2) was repeated for every state until tmax = 30 seconds had passed.

The code for the simulation of the model follows.

%predprey.m



function [X, T] = predprey

X(1, 1) = 50;
X(2, 1) = 100;
T(1) = 0;

S_l = [1, 0; 1, 1; 0, 1];
S_r = [2, 0; 0, 2; 0, 0];

h = zeros(3, 1);

t_max = 30;
c = [1; 0.005; 0.6];

i = 1;
while T(i) < t_max

x = X(1, i);
y = X(2, i);
if x == 0

break
else
dep = [x; x*y; y];
for j = 1:3;

h(j) = c(j)*dep(j);
end
nu = sum(h);
t = exprnd(1/nu);
T(i+1) = T(i) + t;
prob = rand(1);
if prob <= h(1)/nu;

reaction = 1;
elseif prob <= (h(1)+h(2))/nu;

reaction = 2;
else

reaction = 3;
end
X(1, (i+1)) = x - S_l(reaction, 1) + S_r(reaction, 1);
X(2, (i+1)) = y - S_l(reaction, 2) + S_r(reaction, 2);
i = i + 1;
end

end

figure;
plot(T, X);
title(’Predator and prey populations over time when X_0=50 and Y_0=100’);



legend(’Prey’, ’Predators’);
xlabel(’time’);
ylabel(’population size’);
axis([0, 30, 0, 800]);

figure;
plot(X(1, :), X(2, :));
title(’State space representation X vs. Y’);
xlabel(’X=Prey’);
ylabel(’Y=Predators’);

Representative plots follow on the next page.



Fig. 1. The two populations over time, showing the boom and bust cycles.

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

800

Predator and prey populations over time when X
0
=50 and Y

0
=100

time

p
o
p
u
la

ti
o
n
 s

iz
e

 

 

Prey

Predators

Fig. 2. The model in state space.

0 50 100 150 200 250 300 350 400 450
0

100

200

300

400

500

600
State space representation X vs. Y

X=Prey

Y
=

P
re

d
a
to

rs



2 Stochastic simulation of the lac operon.

The annotated code for the simulation of the model follows.

• Code to generate the left and right stoichiometry matrices.
%lacoperon_matrices.m

function [sl, sr] = lacoperon_matrices

%Each type of molecule is assigned a row in the matrices for easy reference
G = 1; L = 2; betaG = 3; Op = 4; mRNA = 5; AOp = 6;
ROp = 7; LRP = 8; CAP = 9; LRPL = 10; CAPG = 11;

%initialize the stoichiometry matrices
sl = zeros(16, 11);
sr = zeros(16, 11);

%lactose digestion
sl(1, L) = 1;
sl(1, betaG) = 1;
sr(1, G) = 1;
sr(1, betaG) = 1;

%glucose consumption
sl(2, G) = 1;

%regular transcription
sl(3, Op) = 1;
sr(3, Op) = 1;
sr(3, mRNA) = 1;

%activated transcription
sl(4, AOp) = 1;
sr(4, AOp) = 1;
sr(4, mRNA) = 1;

%repressed transcription
sl(5, ROp) = 1;
sr(5, ROp) = 1;
sr(5, mRNA) = 1;

%operon repression
sl(6, LRP) = 1;
sl(6, Op) = 1;
sr(6, ROp) = 1;

%operon liberalization



sl(7, ROp) = 1;
sr(7, LRP) = 1;
sr(7, Op) = 1;

%repressor neutralization
sl(8, LRP) = 1;
sl(8, L) = 1;
sr(8, LRPL) = 1;

%repressor dissociation
sl(9, LRPL) = 1;
sr(9, LRP) = 1;
sr(9, L) = 1;

%operon activation
s1(10, CAP) = 1;
sl(10, Op) = 1;
sr(10, AOp) = 1;

%operon deactivation
sl(11, AOp) = 1;
sr(11, CAP) = 1;
sr(11, Op) = 1;

%CAP neutralization
sl(12, CAP) = 1;
sl(12, G) = 1;
sr(12, CAPG) = 1;

%CAP dissociation
sl(13, CAPG) = 1;
sr(13, CAP) = 1;
sr(13, G) = 1;

%protein synthesis
sl(14, mRNA) = 1;
sr(14, mRNA) = 1;
sr(14, betaG) = 1;

%mRNA decay
sl(15, mRNA) = 1;

%betaG decay
sl(16, betaG) = 1;

• Code to generate the hazards, hi(X), the transition rateν(X), and the probability distribution
given by hi(X)/ν(X).



%lacoperon_h

function [nu, prob] = lacoperon_h(X)

%The vector of constants c_i
c = [1, 0.1, 0.01, 0.1, 0.001, 1, 1, 10, 1, 1, 1, 10, 1, 1, 1, 0.1];

%The row nubmers of each of the species in the state matrix
G = 1; L = 2; betaG = 3; Op = 4; mRNA = 5; AOp = 6;
ROp = 7; LRP = 8; CAP = 9; LRPL = 10; CAPG = 11;

h = zeros(1, 16);

%The hazards calculated for each reaction
h(1) = c(1)*X(L)*X(betaG);
h(2) = c(2)*X(G);
h(3) = c(3)*X(Op);
h(4) = c(4)*X(AOp);
h(5) = c(5)*X(ROp);
h(6) = c(6)*X(LRP)*X(Op);
h(7) = c(7)*X(ROp);
h(8) = c(8)*X(LRP)*X(L);
h(9) = c(9)*X(LRPL);
h(10) = c(10)*X(CAP)*X(Op);
h(11) = c(11)*X(AOp);
h(12) = c(12)*X(CAP)*X(G);
h(13) = c(13)*X(CAPG);
h(14) = c(14)*X(mRNA);
h(15) = c(15)*X(mRNA);
h(16) = c(16)*X(betaG);

%The transition rate, nu
nu = sum(h);

%The probability distributionto determine which event happens
prob = h./nu;

• Code to execute the simulation and plot the results.
% lacoperon.m

function X = lacoperon(sl, sr)

X = zeros(11, 1);
T(1) = 0;

G = 1; L = 2; betaG = 3; Op = 4; mRNA = 5; AOp = 6;



ROp = 7; LRP = 8; CAP = 9; LRPL = 10; CAPG = 11;

X(G, 1) = 50;
X(L, 1) = 50;
X(Op, 1) = 1;
X(LRP, 1) = 10;
X(CAP, 1) = 10;

t_max = 120;

i = 1;
while T(i) < t_max
current_state = X(:, i);
[nu, prob] = lacoperon_h(current_state);
t = exprnd(1/nu);
T(i+1) = T(i) + t;
cum_p=cumsum(prob);
event=sum(cum_p<rand(1))+1;
X(:, i+1) = X(:, i) - sl(event, :)’ + sr(event, :)’;
i = i+1;
end

%Graph monitoring levels of lactose, glucose, mRNA and betaG
figure;
subplot(211)
plot(T,X(L, :), T, X(G, :));
legend(’Lactose’, ’Glucose’);
axis([0, 120, 0, 50]);
title(’Levels of Lactose and Glucose’);
xlabel(’Time’); ylabel(’Levels’);
subplot(212)
title(’Levels of mRNA and \beta galactosidase’);
plot(T, X(mRNA, :), ’r’, T, X(betaG, :), ’m’);
legend(’mRNA’, ’\beta galactosidase’);
xlabel(’Time’); ylabel(’Levels’);
%Graph monitoring time in transcription state and number of CAP and LRP
%molecules
figure;
title(’Time in each transcription state’);
subplot(411)
plot(T, X(ROp, :),’.’);
legend(’Repressed state’);
axis([0, 120, 0, 1]);
subplot(412)



plot(T, X(Op, :), ’.’);
legend(’Normal state’);
axis([0, 120, 0, 1]);
subplot(413)
plot(T, X(AOp, :), ’.’);
legend(’Activated state’);
axis([0, 120, 0, 1]);
subplot(414)
plot(T, X(LRP, :), T, X(CAP, :));
legend(’LRP’, ’CAP’);
axis([0, 120, 0, 40]);
xlabel(’Time’);

0 20 40 60 80 100 120
0

10

20

30

40

50

Time

L
e
v
e
ls

Levels of Lactose and Glucose

 

 

Lactose

Glucose

0 20 40 60 80 100 120
0

1

2

3

4

5

6

Levels of mRNA and β galactosidase

Time

L
e
v
e
ls

 

 

mRNA

β galactosidase

As shown above, the levels of βgalactosidase rise when glucose supply falls because it is needed to
transform the lactose into glucose. The mRNA levels rise at the same time because mRNA is used in
the production of βgalactosidase. Once supplies of both glucose and lactose are short (after around time
70), there is an initial surplus of βgalactosidase because there production has not slowed, but there is not
enough lactose to combine to glucose, so the βgalactosidase levels remain high.



0 20 40 60 80 100 120
0

0.5

1
Time in each transcription state

 

 

Repressed state

0 20 40 60 80 100 120
0

0.5

1

 

 

Normal state

0 20 40 60 80 100 120
0

0.5

1

 

 

Activated state

0 20 40 60 80 100 120
0

20

40

Time

 

 

LRP

CAP

This graphic shows the time spent in each transcription state as well as the levels of LRP and CAP. We
can see that as levels of CAP rise, the operon is in activated state more often, which aligns with the fact
that CAP is used to push the operon from normal state to activated state.


