
Week 4: Markov chains

Branching processes and mitochondrial DNA

Mitochondrial DNA is passed from mother to children without genetic contribution from the
father. All the variability in mitochondrial DNA is due to random mutations accumulated over
time. Using estimates of the mutation rate and differences in mitochondrial DNA between humans,
it would be possible to estimate the periods of time at which groups became distinct populations.
However, we are not going to compute these times here. We will instead focus on a observing a
few facts about a Markov chain (MC) that models the propagation of mitochondrial DNA. Notice
that since male mitochondrial DNA is not passed on to children, it suffices to focus on female
descendants of females, i.e., from mothers to daughters to daughters of daughters and so on.

Let us start by letting Xn denote the number of women in the n-th generation and Xnr be
the number of women whose mitochondrial DNA is of type r. Assign indexes i = 1, 2, . . . , Xn to
all of the n-th generation individuals. Independently of time n or her type r, the i-th woman has
Di daughters with probability distribution

P [Di = j] = pj . (1)

Because mutations are rare, the type of each daughter coincides with that of their mother in most
cases. Once in a while, however, a mother of type r bears a daughter of a different type, say s. This
occurs with probability q. When this happens, we assume that type s is new, i.e., that it is different
from any other type that has ever existed. This is a reasonable assumption because mutations are
rare and can happen in a large number of genes. The probability that the same mutation occurs
twice can therefore be ignored. To simplify the calculations, we assume that mutations are “latent”,
i.e., if a mother of type r has a daughter for which a mutation occurs, then the daughter will still
be of type r, but all of her daughters will be type s. In other words, when a mutation occurs, it
occurs for all daughters. Then, assuming the mother is of type r, we can separate the probability
of bearing Dir daughters of type r or Dis daughters of type s as

P [Dir = j] = (1− q)pj and P [Dis = j] = qpj . (2)

The first probability accounts for the case when no mutations occur. The second one accounts for
the daughters of a woman in which the mutation first arises.

For future reference, define ν to be the expected value of the total number of daughters and νr
to be the expected number of daughters that share their mother’s type, i.e.,

ν = E [Di] =

∞∑
j=1

jpj , νr = E [Dir] = (1− q)
∞∑
j=1

jpj . (3)

A Is the total number of women a Markov chain? Consider the total number of womenXn.
Is the process {Xn}n∈N an MC? If so, describe the transition probabilities P0j = P [Xn+1 = j | Xn = 0]
and P1j = P [Xn+1 = j | Xn = 1] for all j. What are the transition probabilities into state 0, i.e.,
Pi0 = P [Xn+1 = 0 | Xn = i] for all i? Is the probability Pii = P [Xn+1 = i | Xn = i] of a state
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transitioning into itself strictly positive? Is this MC recurrent?

B Is the number of women of a certain DNA type a Markov chain? Consider the
number of women Xnr of mitochondrial DNA of type r. As defined, the process {Xnr}n∈N is not a
MC. Why? Suppose now that we are given the information that at some time N , XNr > 0. Consider
the stochastic process X̂ir = X(N+i)r, for i = 0, 1, . . . , with the information that X̂0r = XNr > 0.

This process is a MC. Why? Describe the transition probabilities P0j = P
[
X̂(n+1)r = j | X̂nr = 0

]
and P1j = P

[
X̂(n+1)r = j | X̂nr = 1

]
for all j. What are the transition probabilities into state 0,

i.e., Pi0 = P
[
X̂(n+1)r = 0 | X̂nr = i

]
for all i? Is the probability Pii = P

[
X̂(n+1)r = i | X̂nr = i

]
of

a state transitioning into itself strictly positive? Is this MC recurrent?

C System simulation. Write a simulation of this stochastic system. You can model the num-
ber of children as Poisson with mean λ = 1.05, which is half the fertility rate of the United States.
If you are up for a challenge, you can approximate the probabilities from the following distribution
taken from the number of children ever born to women in the age group 40-441

Number of children Percentage Number of children Percentage

0 0.179 1 0.174
2 0.354 3 0.189
4 0.068 5,6 0.028
> 7 0.008

If you decide to use the data in this table, notice that the above distribution is for all children,
both male and female, and that you are interested in girls only. Hand in your code.

D Simulation tests one. Run a simulation with rate of mutation q = 10−2, using X0 = 100
women, all with different mitochondrial DNA types. Run for n = 50 generations—approximately
1000 years at 20 years per generation. Show plots for the number of women in each type, number
of existing types, and accumulated number of extinct types as a function of the generation. Show
a bar plot of the number of individuals per type.

E Simulation tests two. Repeat part D with rate of mutation q = 0 and X0 = 400 individuals
of different types. This experiment shows the chances of your direct female line surviving for the
next 10 centuries. Notice that most of the types go extinct, a few have a moderate number of
individuals, and one or two have a large number of individuals. This means that far into the
future, most of your direct female lines will be extinct except for one of you that will have a very
large number of descendants. Who among you will be the one surviving, however, is determined
by chance.

F Expected value of the number of direct line female descendants. The number of
individuals in the (n + 1)-th generation can be written in terms of the number Xn of individuals
in the n-th generation and the numbers of daughters Di of each individual. Explicitly,

Xn+1 =

Xn∑
i=1

Di. (4)

1US census bureau, “Distribution of Women by Average Number of Children Ever Born, by Race, Marital Status,
and Age,” June 2002
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Use (4) to prove that if the number of women in the first generation (n = 0) is X0, then the
expected number of female individuals in the n-th generation is

µn = E [Xn] = X0ν
n. (5)

Compare (5) with the number of individuals as a function of time you obtained in parts D and E.
If they are similar, explain the similarity. If they are not, explain the differences.

Likewise, prove that the expected number of descendants sharing the mitochondrial DNA type
of one type r woman from the zeroth generation is

µnr = E [Xnr] = νnr = (1− q)nνn. (6)

G Extinction in probability and almost sure extinction. Show that if νr < 1 then type r
goes extinct in probability independently of the number of individuals in the original generation,
i.e,

lim
n→∞

P [Xnr = 0] = 1. (7)

Using the fact that after Xnr becomes 0 for the first time it stays at 0 show that when νr < 1 types
become extinct almost surely, i.e.,

P
[

lim
n→∞

Xnr = 0
]

= 1. (8)

Note that these are very different conclusions: (7) is the limit of a probability whereas (8) is the
probability of a limit.

H Probability of extinction in m generations. Denote as Pem (x) the probability that
a certain mitochondrial type becomes extinct before the m-th generation when the number of
individuals with this type in zeroth generation x. For instance, consider there is a single individual
of type r at time 0. Then, Pe1(1) is the probability that type r goes extinct at generation 1, i.e.,
that she does not have any descendants in the first generation. In other words, it is the probability
that she bears no daughters. The probability Pe2(1) refers to the event that she has no descendants
in the second generation, either because she did not have daughters or because her daughters did
not have daughters. In general, Pem(1) is the probability that her direct female line died out some
time before the m-th generation. Compute the probability Pe1(1) of extinction in one generation.
For extinction in more than one generation prove that the following recursion is true

Pem(1) =

∞∑
j=1

pj
[
Pe(m−1)(1)

]j
. (9)

For x 6= 1 argue that the probability of extinction is simply Pem(x) = [Pem(1)]x. Compare this
value as a function of time with the numerical estimate you obtain from the simulations in parts D
and E.

I Probability of eventual extinction. Denote as Pe(x) the probability of eventual extinction—
i.e., extinction at sometime between now and infinity—of a mitochondrial DNA type when the
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number of original individuals is x. Show that Pe(1) is the solution of the following equation

Pe(1) =
∞∑
j=1

pj [Pe(1)]j . (10)

Argue that in general Pe(x) = [Pe(1)]x.
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