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Markov chains

I Consider time index n = 0, 1, 2, . . . & time dependent random state X
n

I State X
n

takes values on a countable number of states
I In general denotes states as i = 0, 1, 2, . . .
I Might change with problem

I Denote the history of the process X
n

= [X
n

,X
n�1

, . . . ,X
0

]T

I Denote stochastic process as XN

I The stochastic process XN is a Markov chain (MC) if

P
⇥

X
n+1

= j
�

�X
n

= i ,X
n�1

⇤

= P
⇥

X
n+1

= j
�

�X
n

= i
⇤

= P
ij

I Future depends only on current state X
n
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Observations

I Process’s history X
n�1

irrelevant for future evolution of the process

I Probabilities P
ij

are constant for all times (time invariant)

I From the definition we have that for arbitrary m

P
⇥

X
n+m

�

�X
n

,X
n�1

⇤

= P
⇥

X
n+m

�

�X
n

⇤

I X
n+m

depends only on X
n+m�1

, which depends only onX
n+m�2

,
. . . which depends only on X

n

I Since P
ij

’s are probabilities they’re positive and sum up to 1

P
ij

� 0
1
X

j=1

P
ij

= 1
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Matrix representation

I Group transition probabilities P
ij

in a “matrix” P

P :=

0

B

B

B

B

B

B

@

P
00

P
01

P
02

. . .
P
10

P
11

P
12

. . .
...

...
...

...
P
i0

P
i1

P
i2

. . .
...

...
...

. . .

1

C

C

C

C

C

C

A

I Not really a matrix if number of states is infinite
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Graph representation

I A graph representation is also used

i i+1i�1

P
ii

P
i,i+1

P
i,i�1

P
i+1,i+1

P
i+1,i

P
i+1,i+2

P
i�1,i�1

P
i�1,i

P
i�1,i�2

P
i+2,i+1

P
i�2,i�1

I Useful when number of states is infinite
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Example: Happy - Sad

I I can be happy (X
n

= 0) or sad (X
n

= 1).

I Happiness tomorrow a↵ected by happiness today only

I Model as Markov chain with transition probabilities

P :=

✓

0.8 0.2
0.3 0.7

◆

H S

0.8

0.2

0.7

0.3

I Inertia ) happy or sad today, likely to stay happy or sad tomorrow
(P

00

= 0.8, P
11

= 0.7)

I But when sad, a little less likely so (P
00

> P
11

)
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Example: Happy - Sad, version 2

I Happiness tomorrow a↵ected by today and yesterday
I Define double states HH (happy-happy), HS (happy-sad), SH, SS
I Only some transitions are possible

I HH and SH can only become HH or HS
I HS and SS can only become SH or SS

P :=

0

B

B

@

0.9 0.1 0 0
0 0 0.4 0.6
0.8 0.2 0 0
0 0 0.3 0.7

1

C

C

A

HH SH

HS SS

0.9

0.1

0.2

0.8

0.7

0.3

0.4

0.6

I More time happy or sad increases likelihood of staying happy or sad

I State augmentation ) Capture longer time memory
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Random (drunkard’s) walk

I Step to the right with probability p, to the left with prob. (1-p)

i i+1i�1

p

1� p 1� p

pp

1� p 1� p

p

I States are 0,±1,±2, . . ., number of states is infinite

I Transition probabilities are

P
i,i+1

= p, P
i,i�1

= 1� p,

I P
ij

= 0 for all other transitions
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Random (drunkard’s) walk - continued

I Random walks behave di↵erently if p < 1/2, p = 1/2 or p > 1/2

p = 0.45 p = 0.50 p = 0.55

0 100 200 300 400 500 600 700 800 900 1000
−100

−80

−60

−40

−20

0

20

40

60

80

100

time

p
o
s
it
io

n
 (

in
 s

te
p
s
)

0 100 200 300 400 500 600 700 800 900 1000
−100

−80

−60

−40

−20

0

20

40

60

80

100

time

p
o
s
it
io

n
 (

in
 s

te
p
s
)

0 100 200 300 400 500 600 700 800 900 1000
−100

−80

−60

−40

−20

0

20

40

60

80

100

time

p
o
s
it
io

n
 (

in
 s

te
p
s
)

I With p > 1/2 diverges to the right (grows unbounded almost surely)

I With p < 1/2 diverges to the left

I With p = 1/2 always come back to visit origin (almost surely)

I Because number of states is infinite we can have all states transient
I They are not revisited after some time (more later)
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Two dimensional random walk

I Take a step in random direction East, West,
South or North

) E, W, S, N chosen with equal probability

I States are pairs of coordinates (x , y)
I x = 0,±1,±2, . . . and y = 0,±1,±2, . . .

I Transiton probabilities are not zero only for
points adjacent in the grid

P

⇥
x(t+1) = i+1, y(t + 1) = j

��
x(t) = i , y(t) = j

⇤
=

1

4

P

⇥
x(t+1) = i�1, y(t + 1) = j

��
x(t) = i , y(t) = j

⇤
=

1

4

P

⇥
x(t+1) = i , y(t + 1) = j+1

��
x(t) = i , y(t) = j

⇤
=

1

4

P

⇥
x(t+1) = i , y(t + 1) = j�1

��
x(t) = i , y(t) = j

⇤
=

1

4

−5 0 5 10 15 20 25 30 35 40
−10

−5

0

5

10

15

20

25

30

35

40

Longitude (East−West)

L
a
ti
tu

d
e
 (

N
o
rt

h
−

S
o
u
th

)

−45 −40 −35 −30 −25 −20 −15 −10 −5 0
−30

−20

−10

0

10

20

30

40

50

Longitude (East−West)
L
a
ti
tu

d
e
 (

N
o
rt

h
−

S
o
u
th

)

Stoch. Systems Analysis Markov chains 11



More about random walks

I Some random facts of life for equiprobable random walks

I In one and two dimensions probability of returning to origin is 1

I Will almost surely return home

I In more than two dimensions, probability of returning to origin is less
than 1

I In three dimensions probability of returning to origin is 0.34

I Then 0.19, 0.14, 0.10, 0.08, . . .
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Random walk with borders (gambling)

I As a random walk, but stop moving when i = 0 or i = J
I Models a gambler that stops playing when ruined, X

n

= 0
I Or when reaches target gains X

n

= J

i i+1i�1 J0

p

1� p 1� p

p
11

. . . . . .

I States are 0, 1, . . . , J. Finite number of states (J). Transition probs.

P
i,i+1

= p, P
i,i�1

= 1� p, P
00

= 1, P
JJ

= 1

I P
ij

= 0 for all other transitions

I States 0 and J are called absorbing. Once there stay there forever

I The rest are transient states. Visits stop almost surely
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Multiple step transition probabilities

I What can be said about multiple transitions ?

I Transition probabilities between two time slots

P2

ij

:= P
⇥

X
m+2

= j
�

�X
m

= i
⇤

I Probabilities of X
m+n

given X
n

) n-step transition probabilities

Pn

ij

:= P
⇥

X
m+n

= j
�

�X
m

= i
⇤

I Relation between n-step, m-step and (m + n)-step transition probs.
I Write Pm+n

ij

in terms of Pm

ij

and Pn

ij

I All questions answered by Chapman-Kolmogorov’s equations
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2-step transition probabilities

I Start considering transition probs. between two time slots

P2

ij

= P
⇥

X
n+2

= j
�

�X
n

= i
⇤

I Using the theorem of total probability

P2

ij

=
1
X

k=1

P
⇥

X
n+2

= j
�

�X
n+1

= k ,X
n

= i
⇤

P
⇥

X
n+1

= k
�

�X
n

= i
⇤

I In the first probability, conditioning on X
n

= i is unnecessary. Thus

P2

ij

=
1
X

k=1

P
⇥

X
n+2

= j
�

�X
n+1

= k
⇤

P
⇥

X
n+1

= k
�

�X
n

= i
⇤

I Which by definition yields

P2

ij

=
1
X

k=1

P
kj

P
ik

Stoch. Systems Analysis Markov chains 16



n-step, m-step and (m + n)-step

I Identical argument can be made (condition on X
0

to simplify
notation, possible because of time invariance)

Pm+n

ij

= P
⇥

X
n+m

= j
�

�X
0

= i
⇤

I Use theorem of total probability, remove unnecessary conditioning
and use definitions of n-step and m-step transition probabilities

Pm+n

ij

=
1
X

k=1

P
⇥

X
m+n

= j
�

�X
m

= k ,X
0

= i
⇤

P
⇥

X
m

= k
�

�X
0

= i
⇤

Pm+n

ij

=
1
X

k=1

P
⇥

X
m+n

= j
�

�X
m

= k
⇤

P
⇥

X
m

= k
�

�X
0

= i
⇤

Pm+n

ij

=
1
X

k=1

Pn

kj

Pm

ik
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Interpretation

I Chapman Kolmogorov is intuitive. Recall

Pm+n

ij

=
1
X

k=1

Pn

kj

Pm

ik

I Between times 0 and m + n time m occurred

I At time m, the chain is in some state X
m

= k

) Pm

ik

is the probability of going from X
0

= i to X
m

= k

) Pn

kj

is the probability of going from X
m

= k to X
m+n

= j

) Product Pm

ik

Pn

kj

is then the probability of going from

X
0

= i to X
m+n

= j passing through X
m

= k at time m

I Since any k might have occurred sum over all k
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Matrix form

I Define matrices P(m) with elements Pm

ij

, P(n) with elements Pn

ij

and

P(m+n) with elements Pm+n

ij

I
P1

k=1

Pn

kj

Pm

ik

is the (i , j)-th element of matrix product P(m)P(n)

I Chapman Kolmogorov in matrix form

P(m+n) = P(m)P(n)

I Matrix of (n +m)-step transitions is product of n-step and m-step
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n-step transition probabilities

I For m = n = 1 (2-step transition probabilities) matrix form is

P(2) = PP = P2

I Proceed recursively backwards from n

P(n) = P(n�1)P = P(n�2)PP = . . . = Pn

I Have proved the following

Theorem
The matrix of n-step transition probabilities P(n) is given by the n-th
power of the transition probability matrix P. i.e.,

P(n) = Pn

Henceforth we write Pn
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Example: Happy-Sad

I Happiness transitions in one day (not the same as earlier example)

P :=

✓

0.8 0.2
0.3 0.7

◆

H S

0.8
0.2

0.7

0.3

I Transition probabilities between today and the day after tomorrow?

P2 :=

✓

0.70 0.30
0.45 0.55

◆

H S

0.70

0.30

0.55

0.45
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Example: Happy-Sad (continued)

I ... After a week and after a month

P7 :=

✓

0.6031 0.3969
0.5953 0.4047

◆

P30 :=

✓

0.6000 0.4000
0.6000 0.4000

◆

I Matrices P7 and P30 almost identical ) lim
n!1 Pn exists

I Note that this is a regular limit

I After a month transition from H to H with prob. 0.6 and from S to
H also 0.6

I State becomes independent of initial condition

I Rationale: 1-step memory ) initial condition eventually forgotten
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Unconditional probabilities

I All probabilities so far are conditional, i.e., P
⇥

X
n

= j
�

�X
0

= i
⇤

I Want unconditional probabilities p
j

(n) := P [X
n

= j ]

I Requires specification of initial conditions p
i

(0) := P [X
0

= i ]

I Using theorem of total probability and definitions of Pn

ij

and p
j

(n)

p
j

(n) := P [X
n

= j ] =
1
X

i=1

P
⇥

X
n

= j
�

�X
0

= i
⇤

P [X
0

= i ]

=
1
X

i=1

Pn

ij

p
i

(0)

I Or in matrix form (define vector p(n) := [p
1

(n), p
2

(n), . . .]T )

p(n) = Pn

Tp(0)
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Example: Happy-Sad

I Transition probability matrix ) P :=

✓

0.8 0.2
0.3 0.7

◆

p(0) = [1, 0] p(0) = [0, 1]
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0.1
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0.8
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Time (days)

P
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b
a
b
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e
s

 

 

P(Happy)

P(Sad)
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1

Time (days)
P

ro
b
a
b
ili

ti
e
s

 

 

P(Happy)

P(Sad)

I For large n probabilities p(t) are independent of initial state p(0)
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Gambler’s ruin problem

I You place $1 bets,
(a) With probability p you gain $1 and
(b) With probability q = (1� p) you loose your $1 bet

I Start with an initial wealth of $i
0

I Define bias factor ↵ := q/p
I If ↵ > 1 more likely to loose than win (biased against gambler)
I ↵ < 1 favors gambler (more likely to win than loose )
I ↵ = 1/2 game is fair

I You keep playing until
(a) You go broke (loose all your money)
(b) You reach a wealth of $N

I Prob. S
i

of reaching $N before going broke for initial wealth $i?
I S stands for success
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Gambler’s Markov chain

I Model as Markov chain XN. Transition probabilities

P
i,i+1

= p, P
i,i�1

= q, P
00

= P
NN

= 1

I Realizations xN. Initial state = initial wealth = i
0

i

i+1i�1

N

0

p

q q

p

11

. . . . . .

I Sates 0 and N said absorbing. Eventually end up in one of them

I Remaining states said transient (visits eventually stop)

I Being absorbing states says something about the limit wealth

lim
n!1

x
n

= 0, or lim
n!1

x
n

= N, ) S
i

:= P
⇣
lim

n!1
X

n

= N
��X

0

= i
⌘
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Recursive relations

I Prob. S
i

of successful betting run depends on current state i only

I We can relate probabilities of SBR from adjacent states

S
i

= S
i+1

P
i,i+1

+ S
i�1

P
i,i�1

= S
i+1

p + S
i�1

q

I Recall p + q = 1. Reorder terms

p(S
i+1

� S
i

) = q(S
i

� S
i�1

)

I Recall definition of bias ↵ = q/p

S
i+1

� S
i

= ↵(S
i

� S
i�1

)
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Recursive relations (continued)

I If current state is 0 then S
i

= S
0

= 0. Can write

S
2

� S
1

= ↵(S
1

� S
0

) = ↵S
1

I Substitute this in the expression for S
3

� S
2

S
3

� S
2

= ↵(S
2

� S
1

) = ↵2S
1

I Apply recursively backwards from S
i

� S
i�1

S
i

� S
i�1

= ↵(S
i�1

� S
i�2

) = . . . = ↵i�1S
1

I Sum up all of the former to obtain

S
i

� S
1

= S
1

⇣

↵+ ↵2 + . . .+ ↵i�1

⌘

I The latter can be written as a geometric series

S
i

= S
1

⇣

1 + ↵+ ↵2 + . . .+ ↵i�1

⌘

Stoch. Systems Analysis Markov chains 29



Geometric series

I Geometric series can be summed. Assuming ↵ 6= 1

S
i

=
1� ↵i

1� ↵
S
1

I Write for i = 1. When in state N, S
N

= 1

1 = S
N

=
1� ↵N

1� ↵
S
1

I Compute S
1

from latter and substitute into expression for S
i

S
i

=
1� ↵i

1� ↵N

I For ↵ = 1 ) S
i

= iS
1

, 1 = S
N

= NS
1

, ) S
i

= (i/N)
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For large N

I Consider exit bound N arbitrarily large.

I For ↵ � 1, S
i

⇡ (↵i � 1)/↵N ! 0

I If win prob. does not exceed loose probability will almost surely
loose all money

I For ↵ < 1, P
i

! 1� ↵i

I If win prob. exceeds loose probability might win

I If initial wealth i su�ciently high, will most likely win

) Which explains what we saw on first lecture and homework
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Queues in communication systems

I Communication systems goal

) Move packets from generating sources to intended destinations

I Between arrival and departure we hold packets in a memory bu↵er

I Want to design bu↵ers appropriately
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Non concurrent queue

I Time slotted in intervals of duration �t

I n-th slot between times n�t and (n + 1)�t

I Average arrival rate is �̄ packets per unit time

I During slot of duration �t probability of packet arrival is � = �̄�t

I Packets are transmitted (depart) at a rate of µ̄ packets per unit time

I During interval �t probability of packet departure is µ = µ̄�t

I Assume no simultaneous arrival and departure (no concurrence)
I Reasonable for small �t (µ and � are likely small)
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Queue evolution equations

I q
n

denotes number of packets in queue in n-th time slot

I A
n

= nr. of packet arrivals, D
n

= nr. of departures (during n-th slot)

I If there are no packets in queue q
n

= 0 then there are no departures

I Queue length at time n + 1 can be written as

q
n+1

= q
n

+ A
n

, if q
n

= 0

I If q
n

> 0, departures and arrivals may happen

q
n+1

=
⇥

q
n

+ A
n

� D
n

⇤

+

, if q
n

> 0

I A
n

2 {0, 1}, D
n

2 {0, 1} and either A
n

= 1 or D
n

= 1 but not both

I Arrival and departure probabilities are

P [A
n

= 1] = �, P [D
n

= 1] = µ

Stoch. Systems Analysis Markov chains 35



Queue evolution probabilities

I Future queue lengths depend on current length only

I Probability of queue length increasing

P
⇥

q
n+1

= i + 1
�

� q
n

= i
⇤

= P [A
n

= 1] = �, for all i

I Queue length might decrease only if q
n

> 0. Probability is

P
⇥

q
n+1

= i � 1
�

� q
n

= i
⇤

= P [D
n

= 1] = µ, for all i > 0

I Queue length stays the same if it neither increases nor decreases

P
⇥

q
n+1

= i
�

� q
n

= i
⇤

= 1� �� µ, for all i > 0

P
⇥

q
n+1

= 0
�

� q
n

= 0
⇤

= 1� �

I No departures when q
n

= 0 explain second equation

Stoch. Systems Analysis Markov chains 36



Queue as a Markov chain

I MC with states 0, 1, 2, . . .. Identify states with queue lengths

I Transition probabilities for i 6= 0 are

P
i,i�1

= �, P
i,i = 1� �� µ, P

i,i+1

= µ

I For i = 0 P
0,0 = 1� � and P

01

= �

i

i+1i�1

0

�

µ µ

��

1� �

�

µ

1� �� ⌫ 1� �� µ1� �� µ

. . . . . .
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Numerical example: Probability propagation

I Build matrix P truncating at maximum queue length L = 100

I Arrival rate � = 0.3. Departure rate µ = 0.33

I Initial probability distribution p(0) = [1, 0, 0, . . .]T (queue empty)

0 100 200 300 400 500 600 700 800 900 1000
10

−3

10
−2

10
−1

10
0

Time

P
ro

b
a
b
ili

ti
e
s

 

 

queue length 0

queue length 10

queue length 20

I Propagate probabilities with
product Pnp(0)

I Probabilities obtained are

P
⇥

q
n

= i
�

� q
0

= 0
⇤

= p
i

(n)

I A few i ’s (0, 10, 20) shown

I Probability of empty queue ⇡ 0.1.

I Occupancy decrease with index
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Transient and recurrent states

I States of a MC can be recurrent or transient

I Transient states might be visited at the beginning but eventually
visits stop

I Almost surely, X
n

6= i for n su�ciently large (qualifications needed)

I Visits to recurrent states keep happening forever

I Fix arbitrary m

I Almost surely, X
n

= i for some n � m (qualifications needed)

T

1

T

2

R

1

R

2

R

3

0.6

0.2
0.2

0.6

0.20.2

0.3

0.7

0.4

0.6

1
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Definitions

I Let f
i

be the probability that starting at i , MC ever reenters state i

f
i

:= P

" 1
[

n=1

X
n

= i
�

�X
0

= i

#

= P

" 1
[

n=m+1

X
n

= i
�

�X
m

= i

#

I State i is recurrent if f
i

= 1

I Process reenters i again and again (almost surely). Infinitely often

I State i is transient if f
i

< 1

I Positive probability (1� f
i

) of never coming back to i
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Recurrent states example

I State R
3

is recurrent because P
⇥
X

1

= R
3

��X
0

= R
3

⇤
= 1

I State R
1

is recurrent because

P
⇥
X

1

= R
1

��X
0

= R
1

⇤
= 0.3

P
⇥
X

2

= R
1

,X
1

6= R
1

��X
0

= R
1

⇤
= (0.7)(0.6)

P
⇥
X

3

= R
1

,X
2

6= R
1

,X
1

6= R
1

��X
0

= R
1

⇤
= (0.7)(0.4)(0.6)

...

P
⇥
X

n

= R
1

,X
n�1

6= R
1

, . . . ,X
1

6= R
1

��X
0

= R
1

⇤
= (0.7)(0.4)n�1(0.6)

I Sum up: f
i

=
1X

n=1

P
⇥
X

n

= R
1

,X
n�1

6= R
1

, . . . ,X
1

6= R
1

��X
0

= R
1

⇤

= 0.3 + 0.7

 1X

n=1

0.4n�1

!
0.6 = 0.3 + 0.7

✓
1

1� 0.4

◆
0.6 = 1

T

1

T

2

R

1

R

2

R

3

0.6

0.2
0.2

0.6

0.20.2

0.3

0.7

0.4

0.6

1
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Transient state example

I States T
1

and T
2

are transient

I Probability of returning to T
1

is f
T

1

= (0.6)2 = 0.36

I Might come back to T
1

only if it goes to T
2

(with prob. 0.6)

I Will come back only if it moves back from T
2

to T
1

(with prob. 0.6)

T

1

T

2

R

1

R

2

R

3

0.6

0.2
0.2

0.6

0.20.2

0.3

0.7

0.4

0.6

1

I Likewise, f
T

2

= (0.6)2 = 0.36
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Accessibility

I State j is accessible from state i if Pn

ij

> 0 for some n � 0

I It is possible to enter j if MC initialized at X
0

= i

I Since P0

ii

= P
⇥

X
0

= 1
�

�X
0

= i
⇤

= 1, state i is accessible from itself

T

1

T

2

R

1

R

2

R

3

0.6

0.2
0.2

0.6

0.20.2

0.3

0.7

0.4

0.6

1

I All states accessible from T
1

and T
2

I Only R
1

and R
2

accessible from R
1

or R
2

I None other than itself accessible from R
3
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Communication

I States i and j are said to communicate (i $ j) if

) i is accessible from j , Pn

ij

> 0 for some n; and

) j is accessible from i , Pm

ji

> 0 for some m

I Communication is an equivalence relation
I Reflexivity: i $ i

I true because P0

ii

= 1

I Symmetry: If i $ j then j $ i
I If i $ j then Pn

ij

> 0 and Pm

ji

> 0 from where j $ i

I Transitivity: If i $ j and j $ k , then i $ k
I Just notice that Pn+m

ik

� Pn

ij

Pm

jk

> 0

I Partitions set of states into disjoint classes (as all equivalences do)

I What are these classes? (start with a brief detour)
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Expected number of visits to states

I Define N
i

as the number of visits to state i given that X
0

= i

N
i

:=
1
X

n=1

I {X
n

= i}

I If X
n

= i , this is the last visit to i with probability 1� f
i

I Prob. revisiting state i exactly n times is (n visits ⇥ no more visits)

P [N
i

= n] = f n
i

(1� f
i

)

I Number of visits N
i

has a geometric distribution with parameter f
i

I Expected number of visits is

E [N
i

] =
1
X

n=1

nf n
i

(1� f
i

) =
1

1� f
i

I For recurrent states N
i

= 1 almost surely and E [N
i

] = 1 (f
i

= 1)
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Alternative transience/recurrence characterization

I Another way of writing E [N
i

]

E [N
i

] =
1
X

n=1

E
h

I {X
n

= i}
i

=
1
X

n=1

Pn

ii

I Recall that: for transient states E [N
i

] = 1/(1� f
1

)
for recurrent states E [N

i

] = 1
I Therefore proving

Theorem

I State i is transient if and only if
P1

n=1

Pn

ii

< 1
I State i is recurrent if and only if

P1
n=1

Pn

ii

= 1

I Number of future visits to transient states is finite

I If number of states is finite some states have to be recurrent
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Recurrence and communication

Theorem
If state i is recurrent and i $ j , then j is recurrent

Proof.

I If i $ j then there are l ,m such that P l

ji

> 0 and Pm

ij

> 0

I Then, for any n we have

P l+n+m

jj

� P l

ji

Pn

ii

Pm

ij

I Sum for all n. Note that since i is recurrent
P1

n=1

Pn

ii

= 1

1
X

n=1

P l+n+m

jj

�
1
X

n=1

P l

ji

Pn

ii

Pm

ij

= P l

ji

 1
X

n=1

Pn

ii

!

Pm

ij

= 1

I Which implies j is recurrent
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Recurrence and transience are class properties

Corollary

If state i is transient and i $ j then j is transient

Proof.

I If j were recurrent, then i would be recurrent from previous theorem

I Since communication defines classes and recurrence is shared by
elements of this class, we say that recurrence is a class property

I Likewise, transience is also a class property

I States of a MC are separated in classes of transient and recurrent
states
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Irreducible Markov chains

I A MC is called irreducible if it has only one class
I All states communicate with each other
I If MC also has finite number of states the single class is recurrent
I If MC infinite, class might be transient

I When it has multiple classes (not irreducible)
I Classes of transient states T

1

, T
2

, . . .
I Classes of recurrent states R

1

,R
2

, . . .
I If MC initialized in a recurrent class R

k

, stays within the class
I If starts in transient class T

k

, might stay on T
k

or end up in a
recurrent class R

l

I For large time index n, MC restricted to one class

I Can be separated into irreducible components
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Example

T

1

T

2

R

1

R

2

R

3

0.6

0.2
0.2

0.6

0.20.2

0.3

0.7

0.4

0.6

1

I Three classes

) T := {T
1

,T
2

}, class with transient states

) R
1

:= {R
1

,R
2

}, class with recurrent states

) R
2

:= {R
3

}, class with recurrent states

I Asymptotically in n su�ces to study behavior for the irreducible
components R

1

and R
2
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Messages

I States of a MC can be transient of recurrent

I A MC can be partitioned in classes of states reachable from each
other

I Elements of the class are either all recurrent or all transient

I A MC with only one class is irreducible

I If not irreducible can be separated in irreducible components
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Limiting distributions

Markov chains. Definition and examples

Chapman Kolmogorov equations

Gambler’s ruin problem

Queues in communication networks: Transition probabilities

Classes of States

Limiting distributions

Ergodicity

Queues in communication networks: Limit probabilities
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Limiting distributions

I MCs have one-step memory. Eventually they forget initial state

I What can we say about probabilities for large n?

⇡
j

:= lim
n!1

P
⇥

X
n

= j
�

�X
0

= i
⇤

= lim
n!1

Pn

ij

I Implicitly assumed that limit is independent of initial state X
0

= i

I We’ve seen that this problem is related to the matrix power Pn

P :=

✓
0.8 0.2
0.3 0.7

◆

P2 :=

✓
0.7 0.3
0.45 0.55

◆

P7 :=

✓
0.6031 0.3969
0.5953 0.4047

◆

P30 :=

✓
0.6000 0.4000
0.6000 0.4000

◆

I Matrix product converges ) probs. independent of time (large n)

I All columns are equal ) probs. independent of initial condition
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Periodicity

I The period of a state i is defined as (ḋ is set of multiples of d)

d = max
n

d : Pn

ii

= 0 for all n /2 ḋ
o

I State i is periodic with period d if and only if

) Pn

ii

6= 0 only if n is a multiple of d (n 2 ḋ)

) d is the largest number with this property

I Positive probability of returning to i only every d time steps

I If period d = 1 state is aperiodic (most often the case)

I Periodicity is a class property

10 2

p 1� p

1 1

I State 1 has period 2. So do 0 and 2 (class property)

I One dimensional random walk also has period 2
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Positive recurrence and ergodicity

I Recall: state i is recurrent if chain returns to i with probability 1

I Proved it was equivalent to
P1

n=1

Pn

ii

= 1

I Positive recurrent when expected value of return time is finite

E [return time] =
1
X

n=1

nPn

ii

n�1

Y

m=0

(1� Pm

ii

) < 1

I Null recurrent if recurrent but E [return time] = 1

I Positive and null recurrence are class properties

I Recurrent states in a finite-state MC are positive recurrent

I Ergodic states are those that are positive recurrent and aperiodic

I An irreducible MC with ergodic states is said to be an ergodic MC

Stoch. Systems Analysis Markov chains 56



Example of a null recurrent MC

0 1 2 3

1

1/2

1/2

2/3

1/3

3/4

1/4

. . .

P [return time = 2] =

1

2

P [return time = 3] =

1

2

⇥
1

3

P [return time = 4] =

1

2

⇥
2

3

⇥
1

4

=

1

3⇥ 4

. . . P [return time = n] =

1

(n � 1)⇥ n

I It is recurrent because probability of returning is 1 (use induction)
nX

m=2

P [return time = m] =

nX

m=2

1

(m � 1)⇥m

=

n � 1

n

! 1

I Null recurrent because expected return time is infinite
1X

n=2

nP [return time = n] =

1X

n=2

n

(n � 1)⇥ n

=

1X

n=2

1

(n � 1)

= 1
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Limit distribution of ergodic Markov chains

Theorem
For an irreducible ergodic MC, lim

n!1 P
ij

exists and is independent of
the initial state i . That is

⇡
j

= lim
n!1

Pn

ij

exists

Furthermore, steady state probabilities ⇡
j

� 0 are the unique nonnegative
solution of the system of linear equations

⇡
j

=
1
X

i=0

⇡
i

P
ij

,
1
X

j=0

⇡
j

= 1

I As observed, limit probs. independent of initial condition exist

I Simple algebraic equations can be solved to find ⇡
j

I No periodic states, transient states, multiple classes or null recurrent
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Algebraic relation to determine limit probabilities

I Di�cult part of theorem is to prove that ⇡
j

= lim
n!1 Pn

ij

exists

I To see that algebraic relation is true use theorem of total probability
(omit conditioning on X

0

to simplify notation)

P [X
n+1

= j ] =
1
X

i=1

P
⇥

X
n+1

= j
�

�X
n

= i
⇤

P [X
n

= i ]

=
1
X

i=1

P
ij

P [X
n

= i ]

I If limits exists, P [X
n+1

= j ] ⇡ P [X
n

= j ] ⇡ ⇡
j

(su�ciently large n)

⇡
j

=
1
X

i=0

⇡
i

P
ij

I The other equation is true because the ⇡
j

are probabilities

Stoch. Systems Analysis Markov chains 59



Vector/matrix notation: Matrix limit

I More compact and illuminating on vector/matrix notation

I Finite MC with J states

I First part of theorem says that lim
n!1 Pn exists and

lim
n!1

Pn =

0

B

B

B

@

⇡
1

⇡
2

. . . ⇡
J

⇡
1

⇡
2

. . . ⇡
J

...
...

...
...

⇡
1

⇡
2

. . . ⇡
J

1

C

C

C

A

I Same probs. for all rows ) independent of initial state

I Probability distribution for large n.

lim
n!1

p(n) = lim
n!1

PT

n

p(0) = [⇡
0

,⇡
1

, . . . ,⇡
J

]T

I Independent of initial condition
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Vector/matrix notation: Eigenvector

I Define vector stationary distribution ⇡ := [⇡
0

,⇡
1

, . . . ,⇡
J

]T

I Limit distribution is unique solution of (1 = [1, 1, . . .]T )

⇡ = PT⇡, ⇡T1 = 1

I ⇡ eigenvector associated with eigenvalue 1 of PT

I Eigenvectors are defined up to a constant
I Normalize to sum 1

I All other eigenvectors of PT have modulus smaller than 1
I If not, Pn diverges, but we know Pn contains n-step transition probs.
I ⇡ eigenvector associated with largest eigenvalue of PT

I Computing ⇡ as eigenvector is computationally e�cient and robust
in some problems
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Vector/matrix notation: Rank

I Can also write as (I is identity matrix, 0 = [0, 0, . . .]T )

�

I� PT

�

⇡ = 0 ⇡T1 = 1

I ⇡ has J elements, but there are J + 1 equations ) overdetermined

I If 1 is eigenvalue of PT , then 0 is eigenvalue of I� PT

I I� PT is rank deficient, in fact rank(I� PT ) = J � 1
I Then, there are in fact only J equations

I ⇡ is eigenvector associated with eigenvalue 0 of I� PT

I ⇡ spans null space of I� PT (not much significance)
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Example: Aperiodic, irreducible Markov chain

I MC with transition probability matrix

P :=

0

@
0 0.3 0.7

0.1 0.5 0.4
0.1 0.2 0.7

1

A

I Does P correspond to an ergodic MC?
I All states communicate with state 2 (full row and column P

2j

6= 0
and P

j2

6= 0 for all j)
I No transient states (irreducible with one recurrent state and finite)
I Aperiodic (period of state 2 is 1)

I Then, there exist ⇡
1

, ⇡
2

and ⇡
3

such that ⇡
j

= lim
n!1 Pn

ij

I Limit is independent of i
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Example: Aperiodic, irreducible MC (continued)

I How do we determine limit probabilities ⇡
j

?
I Solve system of linear equations ⇡

j

=
P1

i=0

⇡
i

P
ij

and
P1

j=0

⇡
j

= 1

0

BB@

⇡
1

⇡
2

⇡
3

1

1

CCA =

0

BB@

0 0.1 0.1
0.3 0.5 0.2
0.7 0.4 0.7
1 1 1

1

CCA

0

@
⇡
1

⇡
2

⇡
3

1

A

I The upper part of matrix above is PT

I There are three variables and four equations
I Some equations might be linearly dependent
I Indeed, summing first three equations: ⇡

1

+ ⇡
2

+ ⇡
3

= ⇡
1

+ ⇡
2

+ ⇡
3

I Always true, because probabilities in rows of P sum up to 1
I This is because of rank deficiency of I� PT

I Solution yields ⇡
1

= 0.0909, ⇡
2

= 0.2987 and ⇡
3

= 0.6104
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Stationary distribution

I Limit distributions are sometimes called stationary distributions

I Select initial distribution such that P [X
0

= i ] = ⇡
i

for all i
I Probabilities at time n = 1 follow from theorem of total probability

P [X
1

= i ] =
1X

i=1

P
⇥
X

1

= j
��X

0

= i
⇤
P [X

0

= i ]

I Definitions of P
ij

, and P [X
0

= i ] = ⇡
i

. Algebraic property of ⇡
j

P [X
1

= i ] =
1X

i=1

P
ij

⇡
i

= ⇡
j

I Probability distribution is unchanged

I Proceeding recursively, system initialized with P [X
0

= i ] = ⇡
i

,

) Probability distribution constant, P [X
n

= i ] = ⇡
i

for all n

I MC stationary in a probabilistic sense (states change, probs. do not)

Stoch. Systems Analysis Markov chains 65



Ergodicity

Markov chains. Definition and examples

Chapman Kolmogorov equations

Gambler’s ruin problem

Queues in communication networks: Transition probabilities

Classes of States

Limiting distributions

Ergodicity

Queues in communication networks: Limit probabilities

Stoch. Systems Analysis Markov chains 66



Ergodicity

I Define T
(n)

i

as fraction of time spent in i-th state up to time n

T
(n)

i

:=
1

n

n

X

m=1

I {X
m

= i}

I Compute expected value of T (n)

i

E
h

T
(n)

i

i

=
1

n

n

X

m=1

E [I {X
m

= i}] = 1

n

n

X

m=1

P [X
m

= i ] ! ⇡
i

I As time n ! 1, probabilities P [X
m

= i ] approach ⇡
i

. Then

lim
t!1

E
h

T
(n)

i

i

= lim
t!1

1

n

n

X

m=1

P [X
m

= i ] = ⇡
i

I For ergodic MCs same is true without expected value ) ergodicity

lim
n!1

T
(n)

i

= lim
n!1

1

n

n

X

m=1

I {X
m

= i} = ⇡
i

, a.s.
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Example: Ergodic Markov chain

I Recall transition probability matrix

P :=

0

@
0 0.3 0.7

0.1 0.5 0.4
0.1 0.2 0.7

1

A

Visits to states, nT (n)

i

Ergodic averages, T (n)

i
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I Ergodic averages slowly converge to limit probabilities
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Function’s Ergodic average

I Use of ergodic averages is more general than T
(n)

i

Theorem
Consider an irreducible Markov chain with states X

n

= 0, 1, 2, . . . and
stationary probabilities ⇡

j

. Let f (X
n

) be a bounded function of the state
X (n). Then, with probability 1

lim
n!1

1

n

n

X

m=1

f (X
m

) =
1
X

i=1

f (i)⇡
i

I T
(n)

i

is a particular case with f (X
m

) = I {X
m

= i}

I Think of f (X
m

) as a reward associated with state X (m)

I (1/n)
P

n

m=1

f (X
m

) is the time average of rewards

Stoch. Systems Analysis Markov chains 69



Function’s Ergodic average (proof)

Proof.

I Because I {X
m

= i} = 1 if and only if X
m

= i we can write

1

n

n

X

m=1

f (X
m

) =
1

n

n

X

m=1

 1
X

i=1

f (i)I {X
m

= i}
!

I Change order of summations. Use definition of T (n)

i

1

n

n

X

m=1

f (X
m

) =
1
X

i=1

f (i)

 

1

n

n

X

m=1

I {X
m

= i}
!

=
1
X

i=1

f (i)T (n)

i

I Let n ! 1 in both sides

I Use ergodic average result for lim
n!1 T

(n)

i

= ⇡
i

[cf. page 67]
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Ensemble and ergodic averages

I There’s more depth to ergodic results than meets the eye

I Ensemble average: across di↵erent realizations of the MC

E [f (X
n

)] =
1
X

i=1

f (i)P (X
n

= i) !
1
X

i=1

f (i)⇡
i

I Ergodic average: across time for a single realization of the MC

f̄ (n) =
1

n

n

X

m=1

f (X
n

)

I These quantities are fundamentally di↵erent but their values
coincide asymptotically in n

I Observing one realization of the MC provides as much information
as observing all realizations

I Practical consequence: Observe/simulate only one path of the MC
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Ergodicity in periodic MCs

I In some sense, still true if MC is periodic

I For irreducible positive recurrent MC (periodic or aperiodic) define

⇡
j

=
1
X

i=0

⇡
i

P
ij

,
1
X

j=0

⇡
j

= 1

I A unique solution exists (we say ⇡
j

are well defined)

I The fraction of time spent in state i converges to ⇡
i

lim
n!1

T
(n)

i

= lim
n!1

1

n

n

X

m=1

I {X
m

= i} ! ⇡
i

I If MC is periodic, probabilities oscillate, but fraction of time spent in
state i converges to ⇡

i
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Example: Periodic irreducible Markov chain

I Matrix P and state diagram of a periodic MC

P :=

0

@
0 1 0

0.3 0 0.7
0 1 0

1

A
10 2

0.2 0.8

1 1

I MC has period 2. If initialized with X
0

= 1, then

P2n+1

11

= P
⇥
X

2n+1

= 1
��X

0

= 1
⇤
= 0,

P2n

11

= P
⇥
X

2n

= 1
��X

0

= 1
⇤
= 1 6= 0

I Define ⇡ := [⇡
1

,⇡
2

,⇡
3

]T as solution of
0

BB@

⇡
1

⇡
2

⇡
3

1

1

CCA =

0

BB@

0 0.3 0
1 0 1
0 0.7 0
1 1 1

1

CCA

0

@
⇡
1

⇡
2

⇡
3

1

A

I Normalized eigenvector for eigenvalue 1 (⇡ = PT⇡, ⇡T1 = 1)
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Example: Periodic irreducible MC (continued)

I Solution yields ⇡
1

= 0.15, ⇡
2

= 0.50 and ⇡
3

= 0.35

Visits to states, nT (n)

i

Ergodic averages, T (n)

i
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I Ergodic averages T (n)

i

converge to the ergodic limits ⇡
i
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Example: Periodic irreducible MC (continued)

I Powers of the transition probability matrix do not converge

P2 =

0

@
0.3 0 0.7
0 1 0

0.3 0 0.7

1

A P3 =

0

@
0 1 0

0.3 0 0.7
0 1 0

1

A = P

I In general we have P2n = P2 and P2n+1 = P

I At least one other eigenvalue of the transition probability matrix has
modulus 1

�

�eig
2

�

PT

�

�

� = 1

I In this example, eigenvalues of PT are 1, �1 and 0
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Reducible Markov chains

I If MC is not irreducible it can be decomposed in transient (T
k

),
ergodic (E

k

), periodic (P
k

) and null recurrent (N
k

) components
I All of these are class properties

I Limit probabilities for transient states are null P [X
n

= i ] ! 0, for all
X
n

2 T
k

I For arbitrary ergodic component E
k

, define conditional limits

⇡
i

= lim
n!1

P
⇥

X
n

= i
�

�X
0

2 E
k

⇤

, for all i 2 E
k

I Result in page 58 is true with this (re)defined ⇡
i
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Reducible Markov chains (continued)

I Likewise, for arbitrary periodic component P
k

(re)define ⇡
j

as

⇡
j

=
X

i2P
k

⇡
i

P
ij

,
X

j2P
k

⇡
j

= 1, for all j 2 P
k

I A conditional version of the result in page 72 is true

lim
n!1

T
(n)

i

:= lim
n!1

1

n

n

X

m=1

I
�

X
m

= i
�

�X
0

2 P
k

 

! ⇡
i

I For null recurrent components limit probabilities are null
P [X

n

= i ] ! 0, for all X
n

2 N
k
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Example: Reducible Markov chain

I Transition matrix and state diagram of a reducible MC

P :=

0

BBBB@

0 0.6 0.2 0 0.2
0.6 0 0 0.2 0.2
0 0 0.3 0.7 0
0 0 0.6 0.4 0
0 0 0 0 1

1

CCCCA

1

2

3

4

5 0.6

0.2
0.2

0.6

0.20.2

0.3

0.7

0.4

0.6

1

I States 1 and 2 are transient T = {1, 2}
I States 3 and 4 form an ergodic class E

1

= {3, 4}
I State 5 is a separate ergodic class E

2

= {5}
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Example: Reducible MC - matrix powers

I 10-step and 20 step transition probabilities

P5

=

0

BBB@

0 0.08 0.24 0.22 0.46
0.08 0 0.19 0.27 0.46

0 0 0.46 0.54 0

0 0 0.46 0.54 0

0 0 0 0 1

1

CCCA
P10

=

0

BBB@

0.00 0 0.23 0.27 0.50
0 0.00 0.23 0.27 0.50
0 0 0.46 0.54 0

0 0 0.46 0.54 0

0 0 0 0 1

1

CCCA

I Transition into transient states is vanishing (columns 1 and 2)
I Transition from 3 and 4 into 3 and 4 only

I If initialized in ergodic class E
1

= {3, 4} stays in E
1

I Transition from 5 only into 5

I From transient states T = {1, 2} can go into either ergodic
component E

1

= {3, 4} or E
2

= {5}
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Example: Reducible MC - matrix decomposition

I Matrix P can be separated in blocks

P =

0

BBBB@

0 0.6 0.2 0 0.2
0.6 0 0 0.2 0.2
0 0 0.3 0.7 0
0 0 0.6 0.4 0
0 0 0 0 1

1

CCCCA
=

0

@
PT PT E

1

PT E
2

0 PE
1

0
0 0 PE

2

1

A

I Block PT describes transition between transient states

I Blocks PE
1

and PE
2

describe transitions in ergodic components

I Blocks PT E
1

and PT E
2

describe transitions from T to E
1

and E
2

I Powers of n can be written as

Pn =

0

@
Pn

T QT E
1

QT E
2

0 Pn

E
1

0
0 0 Pn

E
2

1

A

I The transient transition block converges to 0, lim
n!1 Pn

T = 0
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Example: Reducible MC - limiting behavior

I As n grows the MC hits an ergodic state with probability 1

I Henceforth, MC stays within ergodic component

P
⇥

X
n+m

2 E
i

�

�X
n

2 E
i

⇤

= 1, for all m

I For large n su�ces to study ergodic components

) MC behaves like a MC with transition probabilities PE
1

) Or like one with transition probabilities PE
2

I We can think that all MCs as ergodic

I Ergodic behavior cannot be inferred a priori (before observing)

I Becomes known a posteriori (after observing su�ciently large time)

Culture micro: Something is known a priori if its knowledge is independent of experience (MCs

exhibit ergodic behavior). A posteriori knowledge depends on experience (values of the ergodic

limits). They are inherently di↵erent forms of knowledge (search for Immanuel Kant)
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Queues in communication systems

Markov chains. Definition and examples

Chapman Kolmogorov equations

Gambler’s ruin problem

Queues in communication networks: Transition probabilities

Classes of States

Limiting distributions

Ergodicity

Queues in communication networks: Limit probabilities

Stoch. Systems Analysis Markov chains 82



Non concurrent communication queue

I Communication system: Move packets from source to destination

I Between arrival and transmission hold packets in a memory bu↵er

I Example problem, bu↵er design: Packets arrive at a rate of 0.45
packets per unit of time and depart at a rate of 0.55. How many
packets the bu↵er needs to hold to have a drop rate smaller than
10�6 (one packet dropped for every million packets handled)

I Time slotted in intervals of duration �t

I During each time slot n

) A packet arrives with prob. �, arrival rate is �/�t

) A packet is transmitted with prob. µ, departure rate is µ/�t

I No concurrence: No simultaneous arrival and departure (small �t)
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Queue evolution probabilities (reminder)

I Future queue lengths depend on current length only

I Probability of queue length increasing

P
⇥

q
n+1

= i + 1
�

� q
n

= i
⇤

= �, for all i

I Queue length might decrease only if q
n

> 0. Probability is

P
⇥

q
n+1

= i � 1
�

� q
n

= i
⇤

= µ, for all i > 0

I Queue length stays the same if it neither increases nor decreases

P
⇥

q
n+1

= i
�

� q
n

= i
⇤

= 1� �� µ, for all i > 0

P
⇥

q
n+1

= 0
�

� q
n

= 0
⇤

= 1� �

I No departures when q
n

= 0 explain second equation
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Queue as a Markov chain (reminder)

I MC with states 0, 1, 2, . . .. Identify states with queue lengths

I Transition probabilities for i 6= 0 are

P
i,i�1

= �, P
i,i = 1� �� µ, P

i,i+1

= µ

I For i = 0 P
0,0 = 1� � and P

01

= �

i

i+1i�1

0

�

µ µ

��

1� �

�

µ

1� �� ⌫ 1� �� µ1� �� µ

. . . . . .
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Numerical example: Limit probabilities

I Build matrix P truncating at maximum queue length L = 100

I Arrival rate � = 0.3. Departure rate µ = 0.33

I Find eigenvector of PT associated with largest eigenvalue (i.e., 1)

I Yields limit probabilities ⇡ = lim
n!1 p(n)

linear scale logarithmic scale
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I Limit probabilities appear linear in logarithmic scale

) Seemingly implying an exponential expression ⇡
i

/ ↵i
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Limit distribution equations

i

i+1i�1

0

�

µ µ

��

1� �

�

µ

1� �� ⌫ 1� �� µ1� �� µ

. . . . . .

I Limit distribution equations for state 0 (empty queue)

⇡
0

= (1� �)⇡
0

+ µ⇡
1

I For the remaining states

⇡
i

= �⇡
i�1

+ (1� �� µ)⇡
i

+ µ⇡
i+1

I Propose candidate solution ⇡
i

= c↵i
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Verification of candidate solution

I Substitute candidate solution ⇡
i

= c↵i in equation for ⇡
0

c↵0 = (1� �)c↵0 + µc↵1 ) 1 = (1� �) + µ↵

I The above equation is true if we make ↵ = �/µ

I Does ↵ = �/µ verify the remaining equations ?

I From the equation for generic ⇡
i

(divide by c↵i�1)

c↵i = �c↵i�1 + (1� �� µ)c↵i + µc↵i+1

µ↵2 � (�+ µ)↵+ � = 0

I The above quadratic equation is satisfied by ↵ = �/µ
I And ↵ = 1, which is irrelevant
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Compute normalization constant

I Determine c so that probabilities sum 1 (
P1

i=0

⇡
i

= 1)

1
X

i=0

⇡
i

=
J

X

i=0

c(�/µ)i =
c

1� �/µ
= 1

I Used geometric sum

I Solving for c and substituting in ⇡
i

= c↵i yields

⇡
i

= (1� �/µ)

✓

�

µ

◆

i

I The ratio µ/� is the queues’ stability margin

I Larger µ/� ) larger probability of having few queued packets
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Queue balance equations

I Rearrange terms in equation for limit probabilities [cf. page 87]

�⇡
0

= µ⇡
1

(�+ µ)⇡
i

= �⇡
i�1

+ µ⇡
i+1

I �⇡
0

is average rate at which the queue leaves state 0
I Likewise (�+ µ)⇡

i

is the rate at which queue leaves state i
I µ⇡

0

is average rate at which the queue enters state 0
I �⇡

i�1

+ µ⇡
i+1

is rate at which queue enters state i

I Limit equations prove validity of queue balance equations

Rate at which leaves = Rate at which enters

i

i+1i�1

0

�

µ µ

��

1� �

�

µ

1� �� ⌫ 1� �� µ1� �� µ

. . . . . .
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Concurrent arrival and departures

I Packets may arrive and depart in same time slot (concurrence)

I Queue evolution equations remain the same, [cf. 35]

I But queue probabilities change [cf. 84]

I Probability of queue length increasing (for all i)

P
⇥

q
n+1

= i + 1
�

� q
n

= i
⇤

= P [A
n

= 1] P [D
n

= 0] = �(1� µ)

I Queue length might decrease only if q
n

> 0 (for all i > 0)

P
⇥

q
n+1

= i � 1
�

� q
n

= i
⇤

= P [D
n

= 1] P [D
n

= 0] = µ(1� �)

I Queue length stays the same if it neither increases nor decreases

P
⇥

q
n+1

= i
�

� q
n

= i
⇤

= �µ+ (1� �)(1� µ) = ⌫, for all i > 0

P
⇥

q
n+1

= 0
�

� q
n

= 0
⇤

= (1� �) + �µ
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Limit distribution / queue balance equations

I Write limit distribution equations ) queue balance equations

I Rate at which leaves = rate at which enters

�(1� µ)⇡
0

= µ(1� �)⇡
1

�

�(1� µ) + µ(1� �)
�

⇡
i

= �(1� µ)⇡
i�1

+ µ(1� �)⇡
i+1

I Propose exponential solution ⇡ = c↵i

i

i+1i�1

0

�(1� µ)

µ(1� �) µ(1� �)

�(1� µ)�(1� µ)

(1� �) + �⌫

�(1� µ)

µ(1� �)

⌫ ⌫⌫

. . . . . .
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Solving for limit distribution

I Substitute candidate solution in equation for ⇡
0

�(1� µ)c = µ(1� �)c↵ ) ↵ =
�(1� µ)

µ(1� �)

I Same substitution in equation for generic ⇡
i

µ(1� �)c↵2 +
�

�(1� µ) + µ(1� �)
�

c↵+ �(1� µ)c = 0

I which as before is solved for ↵ = �(1� µ)/µ(1� �)

I Find constant c to ensure
P1

i=0

c↵i = 1 (geometric series). Yields

⇡
i

= (1� ↵)↵i =

✓

1� �(1� µ)

µ(1� �)

◆✓

�(1� µ)

µ(1� �)

◆

i
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Limited queue size

I Packets dropped if there are too many packets in queue

I Too many packets in queue, then delays too large, packets useless
when they arrive. Also preserve memory

I Equation for state J requires modification (rate leaves = rate enters)

µ(1� �)⇡
J

= �(1� µ)⇡
J�1

I ⇡
i

= c↵i with ↵ = �(1� µ)/µ(1� �) also solve this equation (Yes!)

i

i+1i�1

0

J

�(1 � µ)

µ(1 � �) µ(1 � �)

�(1 � µ)�(1 � µ)

(1 � �) + �⌫

µ(1 � �) µ(1 � �)

� + (1 � µ)(1 � �)

�(1 � µ)

⌫ ⌫⌫

. . . . . .
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Compute limit distribution

I Limit probabilities are not the same because constant c is di↵erent

I To compute c , sum a finite geometric series

1 =
J

X

i=0

c↵i = c
1� ↵J+1

1� ↵
) c =

1� ↵

1� ↵J+1

I Limit distributions for the finite queue are then

⇡
i

=
1� ↵

1� ↵J+1

↵i ⇡ (1� ↵)↵i

I with ↵ = �(1� µ)/µ(1� �), and approximation valid for large J

I Approximation for large J yields same result as infinite length queue
I As it should
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Simulations

I Arrival rate � = 0.3. Departure rate µ = 0.33. Resulting ↵ ⇡ 0.87
I Maximum queue length J = 100. Initial state q

0

= 0 (queue empty)
I Not the same as initial probability distribution

Queue lenght as function of time
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Simulations: Average occupancy and limit distribution

I Average time spent at each queue state is predicted by limit
distribution

I For i = 60 occupancy probability is ⇡ ⇡ 10�5.
I Explains inaccurate prediction for large i
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Bu↵er overflow

I If � = 0.45 and µ = 0.55 how many packets the bu↵er needs to hold
to have a drop rate smaller than 10�6 (one packet dropped for every
million packets handled)

I What is the probability of bu↵er overflow?

I Packet discarded if queue is in state J and a new packet arrives

P [overflow] = �⇡
J

=
1� ↵

1� ↵J+1

�↵J ⇡ (1� ↵)�↵J

I With � = 0.45 and µ = 0.55, ↵ ⇡ 0.82 ) J ⇡ 57

I A final caveat
I Still assuming only 1 packet arrives per time slot
I Lifting this assumption requires introduction of continuous time

Markov chains
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