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Stochastic processes

I Assign a function X (t) to a random event

I Without restrictions, there is little to say about stochastic processes

I Memoryless property makes matters simpler and is not too restrictive

I Have also restricted attention to discrete time and/or discrete space

I Simplifies matters further but might be too restrictive

I Time t and range of X (t) values continuous
I

Time and/or state may be discrete as particular cases

I Restrict attention to (any type or a combination of types)

) Markov processes (memoryless)

) Gaussian processes (Gaussian probability distributions)

) Stationary processes (“limit distributions”)
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Markov processes

I X (t) is a Markov process when the future is independent of the past

I For all t > s and arbitrary values x(t), x(s) and x(u) for all u < s

P
⇥
X (t) � x(t)

��X (s) > x(s),X (u) > x(u), u < s
⇤

= P
⇥
X (t) � x(t)

��X (s) > x(s)
⇤

I Memoryless property defined in terms of cdfs not pmfs

I Memoryless property useful for same reasons of discrete time/state

I But not as much useful as in discrete time /state
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Gaussian processes

I X (t) is a Gaussian process when all prob. distributions are Gaussian

I For arbitrary times t
1

, t
2

, . . . tn it holds

) Values X (t
1

),X (t
2

), . . .X (tn) are jointly Gaussian

I Will define more precisely later on

I Simplifies study because Gaussian distribution is simplest possible

) Su�ces to know mean, variances and (cross-)covariances

) Linear transformation of independent Gaussians is Gaussian

) Linear transformation of jointly Gaussians is Gaussian

I More details later
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Markov processes + Gaussian processes

I Markov (memoryless) and Gaussian properties are di↵erent

) Will study cases when both hold

I Brownian motion, also known as Wiener process

I Brownian motion with drift

I White noise ) linear evolution models

I Geometric brownian motion ) pricing of stocks, arbitrages, risk
neutral measures, pricing of stock options (Black-Scholes)
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Stationary processes

I Process X (t) is stationary if all probabilities are invariant to time
shifts

I I.e., for arbitrary times t
1

, t
2

, . . . , tn and arbitrary time shift s

P [X (t
1

+ s) � x
1

,X (t
2

+ s) � x
2

, . . . ,X (tn + s) � xn] =

P [X (t
1

) � x
1

,X (t
2

) � x
2

, . . . ,X (tn) � xn]

I System’s behavior is independent of time origin

I Follows from our success on studying limit probabilities

I Stationary process ⇡ study of limit distribution

I Will study ) Spectral analysis of stationary stochastic processes
) Linear filtering of stationary stochastic processes
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Jointly gaussian variables

I Random variables (RV) X
1

,X
2

, . . . ,Xn are jointly Gaussian (normal)
if any linear combination of them is Gaussian

I We may also say, vector RV X = [X
1

, . . . ,Xn]T is Gaussian (normal)

I Formally, for any a
1

, a
2

, . . . , an variable (a = [a
1

, . . . , an]T )

Y = a
1

X
1

+ a
2

X
2

+ . . .+ anXn = a

T
X

I is normally distributed

I Consider 2 dimensions ) 2 RVs X
1

and X
2

jointly normal

I To describe joint distribution have to specify

) Means: µ
1

= E [X
1

] and µ
2

= E [X
2

]

) Variances: �2

11

= var [X
1

] = E
⇥
(X

1

� µ
1

)2
⇤
and �2

22

= var [X
2

]

) Covariance: �2

12

= cov(X
1

) = E [(X
1

� µ
1

)(X
2

� µ
2

)]
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Pdf of jointly normal RVs in 2 dimensions

I In 2 dimensions, define vector µ = [µ
1

, µ
2

]T

I And covariance matrix C with elements (C is symmetric, CT = C )

C =

✓
�2

11

�2

12

�2

12

�2

22

◆

I Joint pdf of x is given by

f
X

(x) =
1

2⇡ det1/2(C)
exp

✓
�1

2
(x� µ)TC�1(x� µ)

◆

I Assumed that C is invertible and as a consequence det(C) 6= 0

I Can verify that any linear combination a

T
x is normal if the pdf of x

is as given above
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Pdf of jointly normal RVs in n dimensions

I For X 2 Rn (n dimensions) define µ = E [X] and covariance matrix

C := E
⇥
xx

T ⇤
=

0

BBB@

E
⇥
(X

1

)

2

⇤
E [(X

1

)X

2

] . . . E [(X

1

)Xn]

E [X

2

X

1

] E
⇥
X

2

2

⇤
. . . E [X

2

Xn]

.

.

.

.

.

.

.

.

.

.

.

.

E [XnX1

] E [XnX2

] . . . E
⇥
X

2

n

⇤

1

CCCA

I
C symmetric. Consistent with 2-dimensional def. Made µ = 0

I Joint pdf of x defined as before (almost)

f
X

(x) =
1

(2⇡)n/2 det1/2(C)
exp

✓
�1

2
(x� µ)TC�1(x� µ)

◆

I
C invertible, therefore det(C) 6= 0. All linear combinations normal

I Expected value µ and covariance matrix C completely specify
probability distribution of a Gaussian vector X
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A notational aside

I With x 2 Rn, µ 2 Rn and C 2 Rn⇥n, define function N (µ,C; x) as

N (µ,C; x) :=
1

(2⇡)n/2 det1/2(C)
exp

✓
�1

2
(x� µ)TC�1(x� µ)

◆

I µ and C are parameters, x is the argument of the function

I Let X 2 Rn be a Gaussian vector with mean µ, and covariance C

I Can write the pdf of X as

f
X

(x) =
1

(2⇡)n/2 det1/2(C)
exp

✓
�1

2
(x� µ)TC�1(x� µ)

◆
:= N (µ,C; x)
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Gaussian processes

I Gaussian processes (GP) generalize Gaussian vectors to infinite dimensions

I X (t) is a GP if any linear combination of values X (t) is Gaussian

I I.e., for arbitrary times t
1

, t
2

, . . . , tn and constants a
1

, a
2

, . . . , an

Y = a
1

X (t
1

) + a
2

X (t
2

) + . . .+ anX (tn)

I has a normal distribution

I t can be a continuous or discrete time index

I More general, any linear functional of X (t) is normally distributed

I A functional is a function of a function

I E.g., the (random) integral Y =

Z t
2

t
1

X (t) dt has a normal distribution

I Integral functional is akin to a sum of X (ti )
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Joint pdfs in a Gaussian process

I Consider times t
1

, t
2

, . . . , tn. The mean value µ(ti ) at such times is

µ(ti ) = E [X (ti )]

I The cross-covariance between values at times ti and tj is

C(ti , tj) = E
⇥�
X (ti )� µ(ti )

��
X (tj)� µ(tj)

�⇤

I Covariance matrix for values X (t
1

),X (t
2

), . . . ,X (tn) is then

C(t

1

, . . . , tn) =

0

BBB@

C(t

1

, t
1

) C(t

1

, t
2

) . . . C(t

1

, tn)
C(t

2

, t
1

) C(t

2

, t
2

) . . . C(t

2

, tn)
.

.

.

.

.

.

.

.

.

.

.

.

C(tn, t1) C(tn, t2) . . . C(tn, tn)

1

CCCA

I Joint pdf of X (t
1

),X (t
2

), . . . ,X (tn) then given as

fX (t
1

),...,X (tn)(x1, . . . , xn) = N
⇣
[µ(t

1

), . . . , µ(tn)]
T ,C(t

1

, . . . , tn); [x1, . . . , xn]
T
⌘
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Mean value and autocorrelation functions

I To specify a Gaussian process, su�ces to specify:

) Mean value function ) µ(t) = E [X (t)] ; and

) Autocorrelation function ) R(t
1

, t
2

) = E
⇥
X (t

1

)X (t
2

)
⇤

I Autocovariance obtained as C (t
1

, t
2

) = R(t
1

, t
2

)� µ(t
1

)µ(t
2

)

I For simplicity, most of the time will consider processes with µ(t) = 0

I Can always define process Y (t) = X (t)� µX (t) with µY (t) = 0

I In such case C (t
1

, t
2

) = R(t
1

, t
2

)

I Autocorrelation is a function of two variables t
1

and t
2

I Autocorrelation is a symmetric function R(t
1

, t
2

) = R(t
2

, t
1

)
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Probabilities in a Gaussian process

I All probs. in a GP can be expressed on terms of µ(t) and R(t
1

, t
2

)

I For example, probability distribution function of X (t) is

fX (t)(xt) =
1q

2⇡
�
R(t, t)� µ2(t)

� exp
 
�

�
xt � µ(t)

�
2

2
�
R(t, t)� µ2(t)

�
!

I For a zero mean process with µ(t) = 0 for all t

fX (t)(xt) =
1p

2⇡R(t, t)
exp

✓
� x2t
2R(t, t)

◆
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Joint and conditional probabilities in a GP

I For a zero mean process consider two times t
1

and t
2

I The covariance matrix for X (t
1

) and X (t
2

) is

C =

✓
R(t

1

, t
1

) R(t
1

, t
2

)
R(t

1

, t
2

) R(t
2

, t
2

)

◆

I Joint pdf of X (t
1

) and X (t
2

) then given as

fX (t
1

),X (t
2

)

(x
1

, x
2

) =
1

2⇡ det1/2(C)
exp

✓
�1

2
[xt

1

, xt
2

]TC�1[xt
1

, xt
2

]

◆

I Conditional pdf of X (t
1

) given X (t
2

) computed as

fX (t
1

)|X (t
2

)

(x
1

, x
2

) =
fX (t

1

),X (t
2

)

(xt
1

, xt
2

)

fX (t
2

)

(x
2

)
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Brownian motion as limit of random walk

I Gaussian processes are natural models due to central limit theorem

I Let us reconsider a symmetric random walk in one dimension

I Walker takes increasingly frequent and increasingly small steps

time step = h

t

x(t)
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Brownian motion as limit of random walk

I Gaussian processes are natural models due to central limit theorem

I Let us reconsider a symmetric random walk in one dimension

I Walker takes increasingly frequent and increasingly small steps

time step = h/2

t

x(t)
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Brownian motion as limit of random walk

I Gaussian processes are natural models due to central limit theorem

I Let us reconsider a symmetric random walk in one dimension

I Walker takes increasingly frequent and increasingly small steps

time step = h/4

t

x(t)
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Random walk, time step h and step size �
p
h

I Let X (t) be position at time t with X (0) = 0

I Let h be a time step and �
p
h the size of each step

I Walker steps right or left with prob. 1/2 for each direction

I Given X (t) = x , prob. distribution of the position at time t + h is

P
h
X (t + h) = x + �

p
h
��X (t) = x

i
= 1/2

P
h
X (t + h) = x � �

p
h
��X (t) = x

i
= 1/2

I Consider time T = Nh and index n = 1, 2, . . . ,N

I Define step RV Yn = ±1, equiprobably P [Yn = ±1] = 1/2

I Can write X [(n + 1)h] in terms of X (nh) and Yn as

X [(n + 1)h] = X (nh) +
⇣
�
p
h
⌘
Yn
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Central Limit Theorem as h ! 0

I Use recursively to write X (T ) = X (Nh) as

X (T ) = X (Nh) = X (0) +
⇣
�
p
h
⌘ N�1X

n=0

Yn =
⇣
�
p
h
⌘ N�1X

n=0

Yn

I Yn are independent identically distributed with mean and variance

E [Yn] = 1/2(1) + (1/2)(�1) = 0

var [Yn] = 1/2(1)2 + (1/2)(�1)2 = 1

I As h ! 0 we have N = T/h ! 1, and from central limit theorem

N�1X

n=0

Yn ⇠ N (0,N) = N (0,T/h)

I Therefore ) X (T ) ⇠ N
�
0, (�2h)(T/h)

�
= N

�
0,�2T

�
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Conditional distribution of later values

I More general, consider times T = Nh and T + S = (N +M)h

I Let X (T ) = x(T ) be given. Can write X (T + S) as

X (T + S) = x(T ) +
⇣
�
p
h
⌘ N+M�1X

n=N

Yn

I From central limit theorem it then follows

N+M�1X

n=N

Yn ⇠ N
�
0, (N +M � N)

�
= N (0, S/h)

I Therefore )
h
X (T + S)

��X (T ) = x(T )
i
⇠ N (x(T ),�2S)
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Definition of Brownian motion

I The former is for motivational purposes

I Define a Brownian motion process as (a.k.a Wiener process)

(i) X (t) normally distributed with 0 mean and variance �2t

X (t) ⇠ N
�
0,�2t

�

(ii) Independent increments ) For disjoint intervals (t
1

, t
2

) and (s
1

, s
2

)
increments X (t

2

)� X (t
1

) and X (s
2

)� X (s
1

) are independent RVs

(iii) Stationary increments ) Probability distribution of increment
X (t + s)� X (s) is the same as probability distribution of X (t)

I Property (ii) ) Brownian motion is a Markov process

I Properties (i) and (ii) ) Brownian motion is a Gaussian process
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Mean and autocorrelation of Brownian motion

I Mean function µ(t) = E [X (t)] is null for all times (by definition)

µ(t) = E [X (t)] = 0

I For autocorrelation RX (t1, t2) start with times t
1

< t
2

I Use conditional expectations to write

RX (t1, t2) = E [X (t
1

)X (t
2

)] = EX (t
1

)

h
EX (t

2

)

⇥
X (t

1

)X (t
2

)
��X (t

1

)
⇤i

I In the innermost expectation X (t
1

) is a given constant, then

RX (t1, t2) = EX (t
1

)

h
X (t

1

)EX (t
2

)

⇥
X (t

2

)
��X (t

1

)
⇤i

I Start computing innermost expectation
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Autocorrelation of Brownian motion (continued)

I The conditional distribution of X (t
2

) given X (t
1

) is

h
X (t

2

)
��X (t

1

)
i
⇠ N

⇣
X (t

1

),�2(t
2

� t
1

)
⌘

I Innermost expectation is then ) EX (t
2

)

⇥
X (t

2

)
��X (t

1

)
⇤
= X (t

1

)

I From where autocorrelation follows as

RX (t1, t2) = EX (t
1

)

⇥
X (t

1

)X (t
1

)
⇤
= EX (t

1

)

⇥
X 2(t

1

)
⇤
= �2t

1

I Repeating steps, if t
2

< t
1

) RX (t1, t2) = �2t
1

I Autocorrelation of Brownian motion ) RX (t1, t2) = �2 min(t
1

, t
2

)
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Brownian motion with drift

I Similar to Brownian motion, but start with biased random walk

I Time step h, step size �
p
h, right or left with di↵erent probs.

P
h
X (t + h) = x + �

p
h
��X (t) = x

i
=

1

2

⇣
1 +

µ

�

p
h
⌘

P
h
X (t + h) = x � �

p
h
��X (t) = x

i
=

1

2

⇣
1� µ

�

p
h
⌘

I If µ > 0 biased to the right, if µ negative, biased to the left

I Definition requires h small enough to make (µ/�)
p
h  1

I Notice that bias vanishes as
p
h. Same as variance
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Steps

I Define step RV Yn = ±1, with probabilities

P [Yn = 1] =

1

2

⇣
1 +

µ
�

p
h

⌘
, P [Yn = �1] =

1

2

⇣
1� µ

�

p
h

⌘

I Expected value of Yn is

E [Yn] = (1) P [Xn = 1] + (�1)P [Xn = �1]

=

1

2

⇣
1 +

µ
�

p
h

⌘
� 1

2

⇣
1� µ

�

p
h

⌘

=

µ
�

p
h

I Second moment of Yn is

E
h
Y

2

n

i
= (1)

2

P [Xn = 1] + (�1)

2

P [Xn = �1] = 1

I Variance of Yn is ) var [Yn] = E
h
Y

2

n

i
� E2

[Yn] = 1� µ2

�2

h
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Write as sum of steps & Central Limit Theorem

I Can write X (t) in terms of step RVs Yn

I Consider time T = Nh, index n = 1, 2, . . . ,N. Write X [(n + 1)h] as

X [(n + 1)h] = X (nh) +

⇣
�
p
h

⌘
Yn

I Use recursively to write X (T ) = X (Nh) as

X (T ) = X (Nh) = X (0) +

⇣
�
p
h

⌘ N�1X

n=0

Yn =

⇣
�
p
h

⌘ N�1X

n=0

Yn

I As h ! 0 we have N ! 1 and
PN�1

n=0

Yn normally distributed

I As h ! 0, X (T ) tends to be normally distributed
I

Need to determine mean and variance (and only mean and variance)
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Mean and variance of X (T )

I Expected value of X (T ) = scaled sum of expected values of Yn

E [X (T )] =
⇣
�
p
h
⌘
(N) (E [Yn]) =

⇣
�
p
h
⌘
(N)

⇣µ
�

p
h
⌘
= µT

I Used T = Nh

I Variance of X (T ) = scaled sum of variances of Yn

var [X (T )] =
⇣
�
p
h
⌘
2

(N) (var [Yn]) =
�
�2h
�
(N)

✓
1� µ2

�2

h

◆
! �2T

I Used T = Nh and 1� (µ2/�2)h ! 0

I Brownian motion with drift ) X (t) ⇠ N
�
µt,�2t

�

) Normal with mean µt and variance �2

) Independent and stationary increments
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Geometric Brownian motion

I Next state follows by multiplying by a random value

I Instead of adding or subtracting a random quantity

I Define RV Yi = ±1 with probabilities as in biased Brownian motion

P [Yn = 1] =

1

2

⇣
1 +

µ
�

p
h

⌘
, P [Yn = �1] =

1

2

⇣
1� µ

�

p
h

⌘

I Define geometric random walk through the recursion

Y [(n + 1)h] = Y (nh)e

(

�
p
h
)

Yn

I When Yn = 1 increase Y [(n + 1)h] by relative amount e(�
p
h)

I When Yn = 1 decrease Y [(n + 1)h] by relative amount e�(�
p
h)

I Notice e(�
p
h) ⇡ 1±

⇣
�
p
h
⌘

) suitable to model investment return
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Geometric Brownian motion as function of BMD

I Take logarithms on both sides of recursive definition

log
⇣
Y [(n + 1)h]

⌘
= log

⇣
Y (nh)

⌘
�
⇣
�
p
h
⌘
Yn

I Define X (nh) = log
⇣
Y (nh)

⌘
recursion for X (nh) is

X [(n + 1)h] = X (nh)�
⇣
�
p
h
⌘
Yn

I As h ! 0 the process X (t) becomes BMD with parameters µ and �

I Given a BMD X (t) with parameters µ,�, the process Y (t)

Y (t) = eX (t)

I is a geometric Brownian motion (GBM) with parameters µ,�
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White Gaussian noise
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Delta function

I Consider a function �h(t) defined as

�h(t) =

⇢
1/h if � h/2  t  h/2
0 else

I “Define” delta function as limit of �h(t) as h ! 0

�(t) = lim
h!0

�h(t) =

⇢
1 if t = 0
0 else

I Is this a function? ) Of course not t

�h(t)

I Consider the integral of �h(t) in an interval that includes [�h/2, h/2]

Z b

a
�h(t) dt = 1, for any a, b such that a  �h/2, h/2  b

I Integral is 1 independently of h
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Delta function (continued)

I Another integral involving �h(t) (for h small)

Z b

a
f (t)�h(t) dt ⇡

Z b

a
f (0)�h(t) dt ⇡ f (0), a  �h/2, h/2  b

I Define the generalized function �(t) as the entity having the property

Z b

a
f (t)�(t) dt =

⇢
f (0) if a < 0 < b
0 else

I Delta function permits taking derivatives of discontinuous functions

I A delta function is not defined, its action on other functions is

I Interpretation ) A delta function cannot be observed directly, but
can be observed through its e↵ect in other functions
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Heaviside’s step function and delta function

I Integral of delta function between �1 and t

Z t

�1
�(u) du =

⇢
0 if t < 0
1 if 0 < t

�
:= H(t)

I H(t) is defined as Heaviside’s step function

I To maintain consistency of fundamental theory of calculus we define
the derivative of Heaviside’s step function as

@H(t)

@t
= �(t)

t

�(t)H(t)
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White Gaussian noise

I A White Gaussian noise (WGN) process W (t) is one with

) Zero mean ) E [W (t)] = 0 for all t

) Delta function autocorrelation ) RW (t
1

, t
2

) = �2�(t
1

� t
2

)

I To interpret W (t) consider time step h and process Wh(nh) with

Wh(nh) ⇠ N (0,�2/h)

I Values Wh(n1h) and Wh(n2h) at di↵erent times are independent

I White noise W (t) is the limit of the process Wh(nh) as h ! 0

W (t) = lim
t!1

Wh(nh), with n = t/h

I Process Wh(nh) is the discrete-time representation of white noise
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Properties of WGN

I For di↵erent times t
1

and t
2

, W (t
1

) and W (t
2

) are uncorrelated

E [W (t
1

)W (t
2

)] = RW (t
1

, t
2

) = 0

I But since W (t) is Gaussian uncorrelation implies independence

I Values of W (t) at di↵erent times are independent

I WGN has infinite power ) E
⇥
W 2(t)

⇤
= RW (t, t) = �2�(0)

I Therefore WGN does not represent any physical phenomena

I However WGN ) is a convenient abstraction
) approximates processes with large power and

(nearly) independent samples

I Some processes can be modeled as post-processing of WGN

I Cannot observe WGN directly, but can model its e↵ect on systems
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Integral of white Gaussian noise

I Consider integral of a WGN process W (t) ) X (t) =

Z t

0

W (u) du

I Since integration is linear functional and W (t) is GP, X (t) is also GP

) To characterize X (t) just determine mean and autocorrelation

I The mean function µ(t) = E [X (t)] is null

µ(t) = E
Z t

0

W (u) du

�
=

Z t

0

E [W (u)] du = 0

I The autocorrelation RX (t1, t2) is given by (assume t
1

< t
2

)

RX (t1, t2) = E
✓Z t

1

0

W (u
1

) du
1

◆✓Z t
2

0

W (u
2

) du
2

◆�
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Integral of white Gaussian noise (continued)

I
Product of integral is double integral of product

RX (t1, t2) = E
Z t

1

0

Z t
2

0

W (u

1

)W (u

2

) du

1

du

2

�

I
Interchange expectation & integration

RX (t1, t2) =

Z t
1

0

Z t
2

0

E [W (u

1

)W (u

2

)] du

1

du

2

I
Definition and value of autocorrelation RW (u

1

, u
2

) = �2�(u
1

� u

2

)

RX (t1, t2) =

Z t
1

0

Z t
2

0

�2�(u
1

� u

2

) du

1

du

2

=

Z t
1

0

Z t
1

0

�2�(u
1

� u

2

) du

1

du

2

+

Z t
1

0

Z t
2

t
1

�2�(u
1

� u

2

) du

1

du

2

=

Z t
1

0

�2

du

1

= �2

t

1

I
Same mean and autocorrelation as Brownian motion
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White Gaussian noise and Brownian motion

I GPs are uniquely determined by mean and autocorrelation

) The integral of WGN is Brownian motion

) Conversely the derivative of Brownian motion is WGN

I I.e., with W (t) a WGN process and X (T ) Brownian motion

Z t

0

W (u) du = X (t) , @X (t)

@t
= W (t)

I Brownian motion can be also interpreted as a sum of Gaussians

I Not Bernoullis as before

I Any i.i.d. distribution with same mean and variance would work

I This is fine, but derivatives and integrals involve limits

I What are these derivatives?
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Mean square derivative of a stochastic process

I Consider a realization x(t) of the process X (t)

I The derivative of (lowercase) x(t) is

@x(t)

@t
= lim

h!0

x(t + h)� x(t)

h

I When this limit exists ) limit may not exist for all realizations

I Can define sure limit (limit exists for all processes), almost sure limit
(exists except for a zero-measure set of processes), in probability, etc.

I Definition used here is in mean-squared sense

I Process @X (t)/@t is the derivative of X (t) in mean square sense if

lim
h!0

E
"✓

X (t + h)� X (t)

h
� @X (t)

@t

◆
2

#
= 0
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Mean square integral of a stochastic process

I Likewise consider the integral of a realization x(t) of X (t)

Z b

a
x(t) = lim

h!0

(b�a)/hX

n=1

hx(a+ nh)

I Limit need not exist for all realizations

I Can define in sure sense, almost sure sense, in probability sense, etc.

I Adopt definition in mean square sense

I Process
R b
a X (t) is the integral of X (t) in mean square sense if

lim
h!0

E

2

4
✓

(b�a)/hX

n=1

hX (a+ nh)�
Z b

a
X (t)

◆
2

3

5 = 0

I Mean square sense convergence is convenient to work with
autocorrelation and Gaussian processes
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Example: Linear state model

I
Stochastic process X (t) follows a linear state model if

@X (t)

@t
= aX (t) +W (t)

I
With W (t) WGN with autocorrelation RW (t

1

, t
2

) = �2�(t
1

� t

2

)

I
Discrete time representation of X (t) ) X (nh) with step size h

I
Solving di↵erential eq. between nh and n(h + 1) (h small)

X ((n + 1)h) ⇡ X (nh)e

ah
+

Z
(n+1)h

nh

W (t) dt

I
Defining X (n) = X (nh) and W (n) =

R
(n+1)h
nh

W (t) dt may write

X (n + 1) ⇡ (1 + ah)X (n) +W (n)

I
Where E

⇥
W

2

(n)

⇤
= �2

h and W (n

1

) independent of W (n

2

)
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Example: Vector linear state model

I
Vector stochastic process X(t) follows a linear state model if

@X(t)
@t

= AX(t) +W(t)

I
With W(t) vector WGN RW (t

1

, t
2

) = �2�(t
1

� t

2

)I

I
Discrete time representation of X (t) ) X (nh) with step size h

I
Solving di↵erential eq. between nh and n(h + 1) (h small)

X((n + 1)h) ⇡ X(nh)e

Ah
+

Z
(n+1)h

nh

W(t) dt

I
Defining X(n) = X(nh) and W(n) =

R
(n+1)h
nh

W(t) dt may write

X(n + 1) ⇡ (I+ Ah)X(n) +W(n)

I
Where E

⇥
W

2

(n)

⇤
= �2

hI and W(n

1

) independent of W(n

2

)
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