Early Effect & BJT Biasing

- Early Effect
- DC BJT Behavior
- DC Biasing the BJT
Early Effect

Ideal NPN BJT Transfer Characteristic

<table>
<thead>
<tr>
<th>Mode</th>
<th>V_{BE}</th>
<th>V_{BC}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward-Active</td>
<td>> 0</td>
<td>≤ 0</td>
</tr>
<tr>
<td>Reverse-Active</td>
<td>≤ 0</td>
<td>> 0</td>
</tr>
<tr>
<td>Cutoff</td>
<td>≤ 0</td>
<td>≤ 0</td>
</tr>
<tr>
<td>Saturation</td>
<td>> 0</td>
<td>> 0</td>
</tr>
</tbody>
</table>

$V_{BC} = -V_{CB}$

Not Useful!
Early Effect - Continued

Collector voltage has some effect on collector current – it increases slightly with increases in voltage. This phenomenon is called the “Early Effect” and is modeled as a linear increase in total current with increases in v_{CE}:

$$i_C = I_S e^{\frac{v_{BE}}{V_T}} \left(1 + \frac{v_{CE}}{V_A} \right)$$

is called the Early voltage and ranges from about 15 to 150 V.

$$V_A = \frac{\Delta V_{CE}}{V \Delta I_C} I_C$$

NMOS transistor

$$i_D = i_{DS} \approx \frac{1}{2} k_n \frac{W}{L} (v_{GS} - V_t)^2 (1 + \lambda_n v_{DS})$$

$$\lambda_n = \frac{1}{V_A}$$
Early Effect - Continued

Observed by James Early from BTL

15 V \leq V_A \leq 150 V
Early Effect - Continued

Total (bias+signal) quantities:

\[i_C = I_S e^{\frac{V_{BE}}{V_T}} \left(1 + \frac{V_{CE}}{V_A} \right) \]

\[i_C = I_C + i_c \quad v_{BE} = V_{BE} + v_{be} \quad v_{CE} = V_{CE} + v_{ce} \]

Consider dc (bias) condition (signal = 0):

\[i_C = I_C \quad v_{BE} = V_{BE} \quad v_{CE} = V_{CE} \]

\[I_C = I_S e^{\frac{V_{BE}}{V_T}} \left(1 + \frac{V_{CE}}{V_A} \right) = I_C' \left(1 + \frac{V_{CE}}{V_A} \right) \]

Let's call the idealized collector bias current (no Early Effect) \(I_C' \), i.e.

\[I_C' = I_S e^{\frac{V_{BE}}{V_T}} \]
We shall define:

\[r_o = \frac{V_A}{I'_C} \]

\[I'_C = I_S e^{\frac{V_{BE}}{V_T}} \Rightarrow r_o = f(V_{BE}) \]

The dc current due to both \(V_{BE} \) and \(V_{CE} \) is:

\[I_C = I'_C + \frac{V_{CE}}{r_o} \]
Early Effect - Continued

Although the bias current is better modeled by including the Early effect

\[I_C = I'_C + \frac{V_{CE}}{r_o} \]

We – almost always – will ignore the second term above in hand calculations and use our ideal expression for the bias current:

\[I_C \approx I'_C = I_S e^{\frac{V_{BE}}{V_T}} \]
Early Effect - Continued

The Early term adds r_o to the large signal model:

\[
V_{CE} = (I_C - I'_C) r_o
\]

\[
I_C = I'_C + \frac{V_{CE}}{r_o}
\]
Early Effect - Continued

For typical operating conditions:

\[V_A \approx 50 \text{ } to \text{ } 100 \text{ } V. \]

\[I_C' \approx 1 \text{ } mA. \]

\[r_o = \frac{V_A}{I_C'} \approx \frac{100 \text{ } V}{10^{-3} \text{ } A} = 100 \text{ } k\Omega \]

We usually can ignore \(r_o \) since, in practice, \(r_o \) is in parallel with other resistors, which are much smaller than 100 kΩ. For the time being, you will be specifically told if you must include \(r_o \) in your circuit analyses and designs.
Simulation Results

Early Effect

\[\text{slope} = -\frac{1}{R_C} \]

\[I_C = \frac{1}{R_C} (V_{CC} - V_{CE}) \]

Note: \(r_o \) is in parallel with \(R_C \).

\(r_o \neq \infty \)

\(r_o = \infty \)

load-line
dictated by circuit

\(V_{CE} \) (V)

\(I_C \) (mA)
Active Mode Conditions

Base-emitter diode forward-biased:

\[V_{BE} \geq 0.7 \, V \]

Base-collector diode reverse-biased:

\[V_{BC} = V_{BE} - V_{CE} \leq 0.5 \, V \]

\[-V_{CE} \leq 0.5 - V_{BE} \Rightarrow V_{CE} \geq 0.2 \, V \]

\[V_{CE} \geq 0.2 \, V \]
Amplifier Biasing Goals

We wish to set a stable value of I_C so that we can apply a signal voltage or signal current to the emitter-base circuit and obtain an amplified (undistorted) version of the signal between the collector and ground.

The transistor cannot *saturate* during operation, i.e.

$$v_{CE} > 0.2 \, V.$$

And it cannot *cut off* during operation, *i.e.*

$$i_C > 0 \, mA.$$
Amplifier DC Bias Problem

\[i_C = I_C + i_c \]
\[v_{BE} = V_{BE} + v_{be} \]
\[v_{CE} = V_{CE} + v_{ce} \]
Amplifier Action

- **Base current source:**
 - A small ac change in base current results in a large ac collector current \((\beta i_b)\).
 - This yields a large change in the ac collector voltage \(v_{ce}\).

- **Base voltage source:**
 - A small ac change in base voltage results in a large change in the ac collector current \((i_c = I_S \exp(v_{be}/V_T))\).
 - This yields a large change in the ac collector \(v_{ce}\) voltage.
Voltage Source Input With Collector Load

Solution of the simultaneous equations exists where the two curves: the exponential \((i_C, v_{BE})\) and the straight line \((i_C, v_{CE})\) intersect:

\[
\begin{align*}
i_C &= I_S e^{\frac{v_{BE}}{V_T}} \\
i_C &= \frac{V_{CC} - v_{CE}}{R_C}
\end{align*}
\]

BJT

Circuit

Load Line
Scilab Plot of NPN Characteristic

//Calculate and plot npn BJT collector
//characteristic using active mode model
VT=0.025;
VTinv=1/VsubT;
IsubS=1E-14;
vCE=0:0.01:10;
for vBE=0.58:0.01:0.63
 iC=IsubS*exp(VTinv*vBE);
 plot(vCE,1000*iC); //Current in mA.
end
VCC=10;
Rc=10000;
vLoad=0:0.01:10;
iLoad=(VCC-vLoad)/Rc;
plot(vLoad,1000*iLoad);
Plot Output $i_C \ (mA)$

NPN Transistor Load Line

$\Delta v_{BE} = 0.04V$

$V_{CC} = 10V$

$R_C = 10k \ \Omega$

$\Delta v_{CE} \approx 7V$

$v_{BE} = 0.63V.$

$v_{BE} = 0.62V.$

$v_{BE} = 0.60V.$

k
Amplifier Action

Note that as v_{BE} varies from about $0.59\,V$ to $0.63\,V$, v_{CE} varies from about $1\,V$ to $8\,V$!

A $0.04\,V$ peak-to-peak swing of v_{BE} results in an $7\,V$ peak-to-peak swing in v_{CE} - a voltage-gain ratio of $7/0.04$, or about 175.

The input signal has two components: a dc one called the bias voltage, and an ac one called the (small) signal voltage. For proper operation, let:

$$v_{BE} = V_{BIAS} = \left(v_{BE(MAX)} + v_{BE(MIN)} \right)/2 = 0.61\,V$$

$$v_{be} = v_{signal} = \left(v_{BE(MAX)} - v_{BE(MIN)} \right)/2 = 0.02\,V\,peak$$
Candidate Bias Configurations

- **Base current source**
- **Base voltage source**
- **Emitter current source**
Drive Base With a Base Current Source

For this collector current:

\[V_{CE} = V_{CC} - R_C I_C \]
\[V_{CE} = 10 - 10^4 \cdot 0.5 \cdot 10^{-3} = 5 \text{ V} \]

Assume: \(\beta = 100 \)

\[I_C = \beta I_B = 100 \cdot 5 \cdot 10^{-6} \]

\[I_C = 0.5 \text{ mA}. \]

The transistor is almost right in the center of the desired operating region!
Current Bias Beta Dependence

Unfortunately, β is often poorly controlled and may easily vary from 100 to 200. And β is also temperature dependent!

For $\beta = 100$:
\[I_C = 100 \cdot 5 \cdot 10^{-6} = 0.5 \, mA. \]

\[V_{CE} = V_{CC} - R_C I_C \]

\[V_{CE} = 10 - 10^4 \cdot 0.5 \cdot 10^{-3} = 5 \, V \]

The BJT with a $V_{CE} = 5 \, V$

For $\beta = 200$:
\[I_C = 200 \cdot 10 \cdot 5^{-6} = 1.0 \, mA. \]

\[V_{CE} = 10 - 10^4 \cdot 1 \cdot 10^{-3} = 0 \, V \]

The BJT is saturated!

Base current source biasing \rightarrow BIAS POINT IS UNSTABLE.
Drive Base with a Base Voltage Source

Given: \(I_S = 10^{-14} \ A \)

and: \(I_C = 0.5 \cdot 10^{-3} \ A \)

\[
V_{BE} = 0.025 \ln \left(0.5 \cdot 10^{11} \right)
\]

\[
V_{BE} = 0.025 \cdot 24.635 = 0.616 \ V
\]

Since \(V_{CE} = 5 \ V \) the transistor is nearly at the center of the desired operating region!

OK. Apply 0.616 volts to the base and we have the desired collector current!
Voltage Bias I_S and V_{CE} Dependence

Unfortunately, I_S is highly temperature-dependent, doubling for every 5$^\circ$C increase in temperature.

If the base-emitter voltage is chosen to give $I_C = 0.5 \text{ mA}$ at 20$^\circ$C (68$^\circ$F), it will be 2x at 25$^\circ$C and 0.5x at 15$^\circ$C.

I_C is also highly sensitive to V_{BE}. Consider two values I_C and $10I_C$:

\[
\frac{10I_C}{I_C} = \frac{V_{BE10}}{V_T} \quad \frac{I_S e^{V_{BE1}}}{V_T} = V_T \ln(10)
\]

\[
V_{BE10} - V_{BE1} = 0.025 \cdot 2.3025 = 0.058 \text{ V}.
\]

Less than a 60 mV change in V_{BE} voltage increases I_C by an order of magnitude (10X). BIAS POINT IS UNSTABLE.
Emitter Current Source

This holds collector current close to its desired value since:

\[I_C = \alpha I_E \]

Changes in \(I_C \) due to variations in \(\alpha \) in the range determined by the extremes of \(\beta \) are negligible, i.e.

\[
100 < \beta < 200 \Rightarrow \frac{100}{101} < \alpha < \frac{200}{201} \Rightarrow 0.990 < \alpha < 0.995
\]

\[
\alpha = \frac{\beta}{1 + \beta}
\]

There is considerable variation in base current, however, but this is usually of no consequence.

\[
I_B = \frac{I_E}{\beta + 1} \Rightarrow \frac{I_E}{101} < I_B < \frac{I_E}{201}
\]
Conclusion

Biasing a BJT poses potential large bias stability problems, since its characteristics are highly sensitive to temperature and since its electrical properties (principally β) can vary widely from one device to another!

The next lecture sequence will cover some techniques for stabilizing the BJT bias.